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Abstract

This paper studies what drives green growth in 18 OECD countries from 2003 to 2022
using green GDP as the main measure. We focus on productive capacities, economic
complexity, green technology, economic policy uncertainty, ESG uncertainty, and energy
use. To capture nonlinear and state-dependent effects, we apply quantile-based and
wavelet methods. We find that stronger productive capacities and higher economic
complexity support green growth, especially once countries reach higher development
states. A larger share of green technology patents also boosts green GDP after it passes a
certain threshold. By contrast, higher economic policy and ESG uncertainty reduce green
growth, in particular when green performance is already weak. Changes in energy use
are positively linked to green GDP, but the long-run gains depend on cleaner and more
efficient energy supply. The results suggest that stable policies, green innovation, and
structural upgrading are central for sustained green growth.
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1. Introduction

Green growth is a favorable solution to tackle current challenges by matching economic
progression with the protection of the environment. Green growth has the ability to
protect the planet. Moreover, it fosters inclusive and equitable development (Fay, 2012).
Green growth is aligned with fostering renewable energy use, expanding sustainable
agricultural practices and leads to conservation. Green growth associates with the
objectives of SDGs. It is focused on tacking climate change, protection of marine life and
preservation of terrestrial biodiversity (SDG13,14,15) (Kallgvist, 2021; Qin et al., 2023).
Green growth is also associated with poverty eradication, reduction in inequalities and
decent work (SDG 1, 8, 10) (OECD, 2018). Green growth is associated with sustainable
technologies, opportunities for green jobs that ameliorates poverty and leads to the
development of vibrant economies (Zhang, et al., 2023; Yikun et al, 2023; Yasmeen et al,
2023).

Further, green growth has the capacity to recuperate the health and well- being of the
population across the world. Green growth builds more resilient societies by addressing
issues on air and water pollution (Adams, 2008). Green growth ensures long term
stability and enhances competitiveness. It further addresses SDG 9 (Xing et al., 2024;
Wahab et al.,, 2024; Simeon et al., 2024). Green growth represents the trajectory where
economic prosperity and environmental sustainability is achieved. It enables to achieve
the SDG goals in an impactful way.

There is an urgent need to strengthen productive capacities for laying the groundwork
for green growth. Building productive capacities enables more efficient use of resources
and cleaner technologies. When a country improves productive capacity in particular for
areas like energy efficiency, natural capital management and institutional quality, it
creates opportunities to separate economic expansion and environmental degradation.
The Productive Capacity Index is a multidimensional tool. It was developed by UNCTAD
to assess the ability of the economy to produce goods and services. The policy makers
should use productive capacity index to identify the strengths and weaknesses in national
production system and create pathways for inclusive and sustainable growth.

Further green growth can be improved through green technology. Using eco-friendly
technologies in the energy sector fosters green growth (Su et al., 2020; Ullah et al., 2021).
Technology innovation will provide efficiency in energy production and its utilization.
Further, it will enable conservation of natural resources and minimize carbon emissions.
It allows the simultaneous achievement of economic and ecological goals and fosters
economic expansion. Technology advancement is crucial to industrial transformation and
addressing environmental challenges will be costly without it. The OECD countries have
integrated growth in their national and bilateral policies. The OECD countries includes
green growth in ecological performance evaluations and technology and capital market
reviews.

Green technology stimulates sustainable development. It identifies environmentally
friendly sources of growth, develops environmental friendly industries and creates jobs
and technologies (Ghisetti et al, 2017). To attain green growth it is essential to foster
investments and innovations that signify the foundation of sustainable development and
enhance economic opportunities (Przychodzen et al, 2020). The advancement of studies



on green growth require intense research on the conditions of its formation and its
impact on sustainable development. The stakeholders who are interested in green
economic development include business, the planners and the public who set
environmental goals for sustainable development (Ramdhani et al., 2017).

Investments in Environmental Social Governance is essential for driving towards green
growth. According to Feng and Yuan (2024), the investments integrates sustainability
factors into decision making. It motivates businesses to implement environmentally
responsible practices, uphold social standards and establish strong governance. The
inclusion of ESG criterion in investment strategies enhances capital flows to companies
that highlight environmental stewardship, social responsibility and ethical governance.
Such practices aligns investment portfolio with sustainable values and also impacts
corporate behavior positively (Feng and Yuan, 2024). The studies by Qian and Yu (2024)
and Tan et al. (2024) deliberate that ESG investments fosters green growth by directing
financial resources to enterprises dedicated to sustainable practices. Such processes
promote a faster transition to an environmentally conscious economy.

The inspiration for the present study is taken from the serious juncture at which the
present global economy stands today: climate change and environmental deterioration
are posing up challenges that have not been observed earlier. As the nations take up the
challenges, the transformation to green growth arise not as a policy option but crucial for
sustainable development. Often the OECD countries set an example at the frontier of
technology and economic development with green technology, productive capacities and
ESG. It has therefore become necessary to undertake a study driven by the need to
understand the synergistic effects of these factors in driving the green growth program.
It is against this background that this study seeks to decipher that with productive
capacity, green technology initiatives and ESG may foster inclusive economic growth that
is sustainable.

Against the above background, this research aims to establish how the OECD nations
could transform into green economy that might point out the best practices that other
countries may follow. The study might signal the key challenges and opportunities for the
OECD countries towards the pathway to sustainability. What makes this study important
is its contribution to the expanding field of sustainable development. The study adds
insights to the understanding of environment and sustainability and its interplay with
green technology, productive capacities and ESG framework. This study helps to highlight
the process by which the OECD countries are able to use their resources, technological
capabilities and ESG structures to lead green growth. The study suggests that green
technology, productive capacities and ESG have critical roles and enable green growth.

This study presents a perspective by combining the assessment of productive capacities,
green technology and ESG in the presence of economic complexity, economic policy
uncertainty and energy consumption in the framework of green GDP analysis, in the
context of the OECD countries. Diverse from the earlier research that usually studies
these aspects separately, the present analysis delves into their interdependence and
impact on promoting green growth. By concentrating on the OECD countries that lead in
the implementation of sustainable policies, this research correlates essential parameters
that impact economic growth along with considering the preservation of ecology. The
research is conducted on empirical data using reliable statistical methods to understand
the nonlinear impacts of these factors on green growth. The study also provides
important policy prescriptions to align economic and environmental goals efficiently.



The rest of the paper is designed as follows. Section 2 reviews the related earlier studies.
Section 3 explains the data, models, and methods. Section 4 discusses the major empirical
results. Section 5 concludes with policy recommendations.

2. Review of Literature

The literature argues that green growth is imperative for sustainable development.
However, there are various factors that impact green growth. Based on the current scope
of research, the explorations in the literature along the following dimensions is made: i)
prodcutive capacities and green growth; ii) green technology and green growth; and iii)
uncertainty and green growth.

2.1 Prodcutive capacities and green growth

The UNCTAD (2006, 2020) discusses that the concept of productive capacities has three
major aspects. It includes productive resources, entrepreneurial abilities and production
linkages which determine the country’s ability to produce goods and services and assists
in the growth of the economy. Against the backdrop of this definition the UNCTAD has
recognized eight broad categories defined over several indicators that explain the main
conduits through which a country could develop its productive capacities. The major
categories include transport and infrastructure; energy; information and communication
technology; human capital; private sector; natural resources and structural change in
production. Thus deliberations about the effects of productive capacities on green growth
involves exploration how these dimensions relating to productive capacities affect green
growth.

Ahmed et al. (2020) argues that natural resource abundance leads to degradation of the
environment. While human capital reduces environmental degradation. In another study
Liu et al,, (2023) explored the effect of human capital on green growth for China for the
period 1991 to 2019. The results based on ARDL model indicate positive levels of
education on green growth in China in the long run. In a similar vein, Rahim et al. (2021)
for the next elven countries explored the importance of human capital in facilitating the
growth process. In a similar vein, Wang et al., (2023) for Chinese provinces obtained
positive effects of human capital on green growth. Their study highlights the importance
of government decision making to promote human capital formation in the context of the
Chinese provinces.

The literature has discussed how institutional quality impact a country’s ecological
preservations and socioeconomic expansion (see e.g.,, Ahmed et al., 2022; Salman et al.,
2019; Sarkodie and Adams, 2018). The study by Ahmed et al,, (2022) established in the
context of South Asian economies how institutional quality and financial development
improves long term green growth. In a similar vein, the study by Osabohien et al. (2022)
demonstrated that green environment crucially impacts the overall welfare of the
economy.

The study by Lau et al,, (2014) in the context of Malaysia found that good institutions are
imperative to reduce carbon emissions and secure green growth. In a similar vein, the
study by Abid (2017) found in the context of 41 European countries and 58 Middle East
African countries that good institutions are crucial to foster economic growth and also
assist in the mitigation of carbon emissions. Again Bhattacharya et al. (2017) for 85



developing and advanced countries found that institutions play a major role for
mitigating carbon emissions and fostering economic growth. Further the study by
Sarkodie and Adams (2018) for South Africa obtained that disaggregated and aggregated
energy and political institutions play a key position in environmental quality.

A handful of studies have explored the importance of industrial structure for fostering
green growth. The study by Zhu et al. (2019) for Chinese provinces for the period 1999 to
2016 found industrial structural transformation promotes green growth. Lietal. (2017)
in the context of 30 Chinese provinces found that changes in manufacturing process have
negative implications on total factor productivity.

In the light of the above discussion we may conclude that the major components of
productive capacities contribute towards green growth. Thus the first testable hypothesis
of the study is framed:

H1:It is likely that enhanced productive capacities would spur green growth in the OECD
countries.

2.2 Green technology and green growth

Green technology is an operative method for fostering green economic growth (Sohag et
al.,, 2019b) and implementation of cleaner technologies significantly leads to a decline in
carbon emanations (Yin et al., 2015). For steady and effective reduction in carbon
emissions improvement in technological competence is required (Kwon et al, 2017).
There are numerous studies in the literature that have established the positive effect of
green technology on green growth (Ganda, 2019; Chen and Lei, 2018; Gu et al.,, 2019;
Mensah et al., 2018; Jordaan et al., 2017; Sohag et al., 2019a; Nikzad and Sedigh, 2017;
Wangetal, 2019; Zhang et al, 2017). Some works have demonstrated how green
technology and renewable energy lead to pollution reduction (Lin and Zhu, 2019a, 2019b;
Gu et al, 2019; Sarkodie and Strezov, 2018). The studies by (Alam and Murad, 2020;
Sarkodie and Adom, 2018) have documented that use of clean energy reduces
environmental pollution and thus negative externalities. In sum, green technology and
innovations is an important factor that reduces energy consumption and fosters green
growth. Suki et al. (2022) using a sample set of ASEAN economies for the period 1992 to
2018 explored the effect of green technology innovation on green growth. The findings
based on CS-ARDL method revealed that green technology has negative effects on carbon
dioxide emissions. The study argues that there is an urgent need for research and
development to improve the number of technological patents.

The study by Guo et al. (2020) documents that sustainable technology transfer referred
in the literature as “environmentally sound technology,” plays an important role in
fostering sustainable development goals at the global and local context. The efforts to
pursue such goals will reduce the negative impacts of non green economic development
and improve the standards of living (Ishak, Jamaludin and Abu, 2017; UNCTAD, 2018).
The importance of sustainable technology transfer has made nations aware of the
importance of pollution control and resource conservation (Hansen, Li and Svarverud,
2018). Focusing on green technology had directed nations towards integrated sustainable
solutions that take into consideration environment, society and economy (UNCTAD,
2018). Many countries have invested in infrastructure supporting and technology
development for example Clean Energy Finance Corporation (Austria), National Bank for
Economic and Social Development (Brazil), Green Investment Bank (United Kingdom),
and Green Technology Bank (China) (Geddes, Schmidt and Steffen, 2018; Mazzucato and



Penna, 2016; Guo et al, 2020). In addition the OECD announced 12 green investment
banks (OECD, 2017a, 2017b). Nonetheless the development and introduction of
sustainable technology face political constraints (Yoshino et al.,, 2019), lack of market
awareness (Agyemang et al., 2018); knowledge and awareness (Liao and Shi, 2018) and
financial barriers (Bhandari et al., 2019).

Based on the above discussions, we predict that green technology transfer will raise
investments and use of sustainable technology, leading towards an increase in green
growth. Such processes will lead to more efficient use of natural resources and negative
externalities will recede. Thus, the second testable hypothesis is framed as follows:

H2: Green technology has a positive impact on green growth.

2.3 Uncertainty and green growth

Uncertainty has been a crucial part of green GDP growth. The study by Liu et al., (2023)
explored the impact of EPU on green growth by using a sample of BRICS countries for the
period 1990 to 2020. The study obtained that EPU impedes green growth in the BRICS
countries. The study by Hallegatte et al. (2012) claim that Economic Policy Uncertainty is
a major driving factor for green growth. The study argues that economic policies can set
right efficiency losses of economic operations owing to knowledge externalities,
information asymmetries and other externalities. A series of policy tools such as price
regulations and subsidies are required to boost green GDP. However the study concludes
that polices alone cannot influence green growth.

At the backdrop of uncertainty there should be adequate policies to foster green growth.
According to the study by Sonnenschein and Mundaca (2016) market policies enables in
adjusting the changes in the price system of production factors related to green oriented
industries. To counter economic policy uncertainty there should be adequate
technological policies and tax credits that may assist green technologies to attain
innovation turnover (Cecere and Corrocher, 2016; Wang and Shao, 2019). Policy
uncertainty will spillover into the macro process of green development. The study by Gu
et al. (2021) in the context of China argues that the impact of EPU on green growth is
multidimensional. The same findings are obtained in the study by MA et al., (2022).

The preceding discussion highlighted the importance of uncertainty in impacting green
growth. Most of the earlier studies focused on EPU as a major factor to impact green
growth. The current research proposes that along with EPU based, uncertainty from ESG
risks can impede green growth. Accordingly the third testable hypothesis of the study is
proposed as follows :

H3: Economic Policy Uncertainty and ESG uncertainty are crucial determinants of green
growth.

2.4 Scope of the scholarship

Green economy has attracted the attention of governments, economists and
environmentalists due to the acute threat on environmental problems which includes
climate change, global food insecurity and ecological degradation among others. Policy
initiatives and governance such as initiatives by the United Nations and Paris agreement
are few examples that are aiming to drive towards green growth. Yet studies are limited
on the factors affecting green growth. Moreover research in this area is still at its initial
stages with a large number of studies investigating heterogeneous issues that are lumped



as green growth. There has been considerable efforts to define the concept of green
economy however there is an urgent need to provide a detailed examination of the factors
that drive economies to implement green economy.

This research has significant implications for both theory and practice in the field of
sustainable economics. By elucidating the nonlinear impacts of EPU, ESG, green
technology and productive capacities on green growth and identifying the key factors
affecting the relationship we contribute our advancement in sustainable economics.
Moreover our results offer valuable insights to corporate managers trying to develop
effective ESG strategies that are responsible for regional and industrial contexts. Such
processes enhance the capacity to navigate the challenges posed by ESG.

3. Data and Empirical Strategy

3.1. Data and variables mapping

This study examines the structural and institutional factors influencing green growth in
18 OECD countries from 2003 to 2022. To support this analysis, we compiled a panel
dataset comprising environmental, innovation and policy-driven indicators extracted
from internationally recognised sources.

The OECD context is particularly relevant. These countries represent a relatively
homogeneous group of advanced economies, enabling more precise comparisons to be
made in terms of productive capacity, regulatory maturity and policy engagement in
sustainability-driven transitions. They were also among the first to adopt the ESG
framework and proactive green innovation strategies, which underpinned their
structural change.

The timeframe, which covers the period from 2003 to 2022, captures the critical period
during which climate policy moved to the forefront of global economic discussions. This
period includes pivotal policy events such as the adoption of the Kyoto Protocol in the
early 2000s, the aftermath of the 2008 financial crisis, the Paris Agreement in 2015, and
green recovery ambitions following the 2019-2020 pandemic. These events provide a
rich context for assessing how structural and innovation-related factors have shaped
environmentally sustainable economic outcomes.

To operationalise this analysis, we adopt Green GDP as the focal variable. Unlike
traditional GDP, which only captures the market-based value of goods and services, Green
GDP adjusts for environmental costs such as air pollution, waste generation, and natural
resource depletion. Developed by Skare et al. (2021), this measure integrates
quantitative factors (e.g. energy use and pollution) and qualitative dimensions (e.g.
opportunity costs), offering a more accurate measure of long-term economic
sustainability (Stjepanovic et al., 2022).

The core explanatory variables were selected to reflect key domains relevant to green
transformation. Specifically, i) Economic Complexity Index (ECI SITC): obtained from the
Atlas of Economic Complexity by the Harvard Growth Lab, this variable captures the
knowledge intensity and structural diversity of a country’s exports. It reflects not only
the number of products that a country exports, but also the ubiquity or rarity of those



products in other economies. Higher ECI values indicate that a country exports a wide
range of sophisticated products that are not widely available elsewhere and require in-
depth knowledge and organisational capabilities. From a sustainability perspective, a
complex export structure is often associated with higher added value, lower material
intensity and cleaner production processes, making it a relevant indicator for green
growth analysis; and ii) Green Technology Share (GT%): sourced from the OECD Data
Explorer, this variable measures the proportion of green/environmentally related
patents in total patent activity. It reflects a country’s commitment to and capacity for
developing technological solutions to environmental challenges, such as climate change
mitigation, resource efficiency, pollution control and clean energy generation. High GT%
values suggest that a significant proportion of national R&D efforts are directed towards
sustainability goals, indicating strategic alignment between innovation policy and
environmental objectives. This variable is particularly relevant in the context of green
growth, as the generation and diffusion of clean technologies are key enablers of
decoupling economic performance from environmental degradation (Dechezleprétre et
al.,2008; Cho etal., 2018; Shahbaz et al., 2024). Furthermore, patent data offer a forward-
looking perspective on technological potential as patents precede market adoption and
indicate sectors of potential future industrial transformation (Bergek et al, 2014;
Verhoeven et al., 2016).

In addition to these core variables, we incorporate a broader set of institutional and
contextual indicators. In particular, i) Productive Capacities Index (PCI) developed by
the UN Trade and Development (UNCTAD), is a multidimensional measure that captures
countries' capabilities to produce goods and services in a sustainable and competitive
manner. The PCI aggregates performance across eight core dimensions: human capital,
natural capital, energy, transport, information and communication technology (ICT),
institutions, private sector development and structural change. These components are
derived from over 40 standardised indicators and are designed to reflect the quantity,
quality, and depth of a country’s development capacity. By incorporating this variable
into our analysis, we can gain a comprehensive understanding of the structural readiness
of OECD countries to implement and benefit from the green transformation of their
economies; and ii) Economic Policy Uncertainty Index (EPU) and ESG Uncertainty
Index (ESGUI) both of which were developed by PolicyUncertainty.com, serve as
measures of institutional volatility and regulatory ambiguity in economic and
sustainability domains. The EPU captures fluctuations in uncertainty relating to
macroeconomic and fiscal policy by analysing the frequency of policy-related terms in
major newspapers, alongside data on tax code expiries and disagreements among
economic forecasters. In contrast, the ESGUI focuses specifically on uncertainties in
environmental, social and governance (ESG) policies. It quantifies the frequency and
intensity of public discourse involving terms related to ESG regulations, green finance,
climate commitments and corporate sustainability reporting. ESG frameworks are
becoming increasingly influential in shaping investment and corporate strategies,
especially within the OECD. The presence of volatile or unclear ESG signals may delay the
deployment of green technologies, deter long-term investment and create uncertainty
around compliance costs or future regulation (Ilhan et al., 2021; Berg et al., 2022). In the
context of our study, both indicators are particularly relevant. High levels of economic
policy uncertainty can reduce firms’ willingness to invest in long-term, capital-intensive
green innovations. Likewise, uncertainty surrounding ESG can impede the transition to



more sustainable business models by undermining the clarity and credibility of
environmental commitments.

This extended variable framework enables us to explore not only the technological and
productive drivers of sustainable growth but also the institutional and global dynamics
that shape long-term green economic performance. Table 1 presents list of variables,
abbreviations and the data sources for each of these variables discussed in this study,
ensuring transparency and facilitating the reproducibility of our analytical framework.

Table 1: Data overview

Data Description Abbreviation Source / Institution
Green GDP GG Mendeley Data
Skare, M., Tomic, D., & Stjepanovic, S. (2021)*
Productive Capacities Index PCI UNCTAD
Economic Complexity Index ECI Harvard Growth Lab (Atlas of Economic
(SITQ) Complexity)
Economic Policy Uncertainty  EPU PolicyUncertainty.com
Index
ESG Uncertainty Index ESG PolicyUncertainty.com
Green Technology Share (%) GT OECD
Energy consumption EnC Our world in data

3.2 Quantile-on-Quantile regression (QQR) by Sim and Zhou (2015)

To capture the heterogeneous and state-dependent dynamics between green growth
and its structural, technological, and uncertainty-related determinants, we employ the
Quantile-on-Quantile Regression (QQR) approach proposed by Sim and Zhou (2015).
Unlike traditional quantile regression, which estimates the conditional quantiles of the
dependent variable as a function of the mean of explanatory variables, the QQR method
examines how specific quantiles of an independent variable influence corresponding
quantiles of the dependent variable. This dual quantile structure allows a more nuanced
assessment of non-linear and asymmetric dependence across the entire conditional
distribution. In our context, the QQR framework reveals whether, for instance, high levels
of economic complexity or green technology exert a different impact on green growth
when economies are in strong versus weak performance states.

Formally, let G; denote the growth-adjusted green output (AGG) and X, represents the
respective explanatory variable (PCI, ECI, EPU, ESG, GT, or AENC). Following Sim and
Zhou (2015), the relationship between the 7-th quantile of G; and the 6-th quantile of X,
can be expressed as:

G = a(6,7) + B0, DX — Xg) + £(6,7) (1)

where « is the quantile-specific intercept, (0, 7) captures the elasticity of the 7-th
quantile of G; with respect to the 8-th quantile of X;, Xy is the 6-th quantile of the
independent variable estimated via the Gaussian kernel, and ¢; is the quantile-specific
residual. By estimating $(6, t) over the grid of quantiles 8,7 € (0.1,0.9), the QQR model
generates a three-dimensional surface describing how the impact of each determinant
varies across both the distribution of green growth and its drivers.

3.3 Cross-Quantilogram by Han et al. (2016)



To further examine the dynamic dependence structure between green growth and its
determinants across the conditional distribution, we employ the cross-quantilogram (CQ)
approach proposed by Han et al. (2016). Unlike standard correlation or Granger causality
tests that focus on mean relationships, the CQ framework evaluates quantile-based
dependence between two time series at different quantile combinations and time lags.
This technique captures tail dependence and directional predictability, allowing us to
identify whether extreme events (e.g., high uncertainty, low productivity) in one variable
systematically precede or follow specific outcomes in green growth.

Formally, the cross-quantilogram between G; and an explanatory variable X, is defined
as:

E[Y:(Ge=a6(D) Yo (Xe—k—ax(6))] (2)
E[2 (G- ()] B3 (Xe—k-ax(®)]

Pz, (k) = J

where q;(t) and qx(8) denote the 7-th and 6 -th conditional quantiles of G, and X;,
respectively; . (u) = 1[u < 0] — 7 is the quantile hit process that measures whether the
observation lies below the corresponding quantile; and k represents the lag order. The
statistic p; g (k) thus measures the directional dependence between the 6-th quantile of

X;_i and 7-th quantile of G, at lag k.

This method offers several advantages in our context of green growth analysis. First, it
captures nonlinear and asymmetric interactions that cannot be detected through
conventional linear models. Second, it accounts for the persistence and lead-lag structure
of dependence, revealing whether fluctuations in uncertainty, technology, or productive
capacity precede or lag changes in green growth across different states of the distribution.
Finally, the CQ framework provides a quantile-specific dependence map, enabling
visualization of how lower- or upper-tail shocks in each determinant affect the dynamics
of green growth over time.

3.4 Cross-in-quantile by Balcilar, Gupta and Pierdzioch (2016)

To complement the quantile-on-quantile and cross-quantilogram analyses, we adopt the
causality-in-quantile (CiQ) framework developed by Balcilar, Gupta, and Pierdzioch
(2016). This method evaluates whether an explanatory variable X; Granger-causes
growth-adjusted green output G; at different points of their conditional distributions,
rather than only at the mean. Traditional Granger causality tests assume linearity and
distributional homogeneity, which may overlook causal relationships that occur only
during extreme episodes—such as periods of severe uncertainty, technological surges, or
energy-related shocks. The CiQ approach relaxes these assumptions and allows for
nonlinear, tail-specific, and regime-dependent causal effects.

Formally, the CiQ test examines whether the conditional quantile function of G, ; differs
when conditioning on the history of X;. Let Qg,,, (7|F;) denote the 7-th conditional

quantile of green growth given information set F;. The null hypothesis of no quantile-
specific causality is:
Ho: Q¢,,, (z1Gt, X¢) = Qg,,, (x|G,)  forallt € (0,1)

Under the alternative, past values of X; shift the t-th quantile of G;, , implying causality.
Balcilar et al. (2016) propose a test statistic built from the empirical quantile regression
process, allowing inference without imposing parametric restrictions on the relationship
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between X; and G;. This provides a flexible tool capable of detecting causal effects that
are nonlinear in magnitude and asymmetric across quantiles.

Applying this method to the six determinants—PCI, ECI, EPU, ESG, GT, and AENC—
enables assessment of whether each variable exerts predictive power on green growth
during low-growth states (z =0.1-0.3), normal conditions (z =0.4-0.6), and high-growth
states (7 =0.7-0.9). Importantly, the CiQ approach does not assume that causal effects are
homogeneous: an explanatory variable may lack predictive power during tranquil
periods but exercise strong influence during boom or stress regimes.

To operationalize the test, quantile regression residuals are used to construct the CiQ
statistic across quantiles 0.1-0.9. These are then compared with stimulated 5% and 10%
critical values, allowing identification of regime-specific rejection regions for the null
hypothesis of no causality.

3.5 Wavelet-quantile regression by Adebayo and Ozkan (2024)

Following Adebayo and Ozkan (2024), a traditional quantile regression (QR) model for
two time series can be written as,

Q:(Y 1 X) = Bo(7) + B1(1)X
where Q. (Y | X)is the conditional quantile of the response variable Yat quantile level z,

given the factor variable X. The parameters f,(7)and S, (t)represent the intercept and
slope at that specific quantile.

Quantile regression, introduced by Koenker and Bassett (1978), expands the scope of
classical linear regression by focusing on conditional quantiles rather than the
conditional mean. Unlike ordinary least squares, which only describes how the average
of the dependent variable responds to changes in an explanatory variable, QR allows
researchers to study how different points of the distribution behave. This feature is
especially useful when the relationship between variables is not uniform across the
distribution. QR is also less sensitive to outliers and can accommodate heteroskedasticity,
making it a practical tool in many empirical settings. Through this approach, researchers
gain a clearer view of heterogeneous effects that may be hidden when relying solely on
mean-based methods (Chernozhukov et al., 2013; Koenker, 2005; Machado and Silva,
2005).

However, the traditional QR framework does not distinguish between different time
horizons. It implicitly treats short-term and long-term variations as identical, even
though prior studies highlight that this assumption may not hold (Irfan et al., 2022; Liu
etal., 2023; Olanipekun et al., 2023; Umar et al., 2020).

To address this gap, we employ the Wavelet Quantile Regression developed by Adebayo
and Ozkan (2024) which evaluates how the effect of a factor variable X on the conditional
quantiles of Y evolves across different time scales. The method proceeds in two stages.

First, we decompose the time series Y; and X; using the maximal overlap discrete
wavelet transform (MODWT) of Percival and Walden (2000), following the steps outlined
in Kumar and Padakandla (2022). Let X[i] be a signal of length T = 2/. Using the low-pass
and high-pass filters h,[i]and g,[i], we obtain the first-level approximation and detail
coefficients through convolution,

aq[i] = X ha[i — k]X[K],
di[i] = Xk 91 [t — k]X[K].
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We then apply the same filtering procedure to the approximation coefficients. We have
the followings,

aj+1[i] = Zk h]+1[l - k]X[l]'
1= B gy 4aln — KIXT]].

Repeating this process for ] levels produces a set of detail coefficients for both variables,
each representing fluctuations at a specific time scale.

In the second stage, we run quantile regressions using the wavelet detail coefficients of
Yand X at each scale. The WQR model for quantile level T and decomposition level j is:

Qz(d;[Y] 1 d;[X]) = Bo(7) + B1(D)d;[X].

3.6 Wavelet-quantile correlation by Kumar and Padakondlas (2022)

Following Kumar and Padakondlas (2022), we decompose the return series and Y;using
the maximal overlapping discrete wavelet transform (MODWT) of Percival and Walden
(2000). Consider a signal X[i]of length T = 2/. Let hy[i]and g, [i]be the low-pass and
high-pass filters associated with an orthogonal wavelet. Convolution of X[i]with these
filters yields the approximation coefficients a, [i]and the detail coefficients d4[i],

ali] = ) hali - kls[k]
k

difi] = ) gali = Klslk]
k

The approximation coefficients a, [i]are then passed through upsampled versions of the
original filters, denoted h,[i]and g,[i], where the up-sampling operator U(-)inserts a
zero between each adjacent element of the filter. Repeating this procedure produces the
multi-level decomposition. Forj = 1,2, ...,J, — 1, with J, </,

ajali] = ) hyaali = Kla[k]
k

dilil = ) hyaln — Kyl
k

where hjq[i] = U(h;[i]) and g;4[i] = U(g;[i]) . After completing the ] -level
decomposition for both X;and Y;, we apply quantile correlation to each pair of detail
coefficients (dj[X],dj[Y]). This produces a scale-specific dependence measure, the
Wavelet Quantile Correlation, defined for quantile t at scale j as,

qcov,(d;[Y], d;[X])

e (6 (4191 = Qeayp) ) var (@ XD

WQCr(dj (X1, dj [Y]) =
qcov,(dj [Y],d; [X]) = cov {I (dj [Y]— nyd].[y] > 0),x}
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4. Main Results

The summary statistics are presented in Table 2. The table indicates substantial
dispersion in growth-adjusted green output (AGG). Specifically, the median is positive,
but the interquartile range is negative and the overall range is wide, suggesting volatility
with occasional extremes. The structural variables: productive capacity (PCI) and
economic complexity (ECI) exhibit moderate spread, reflecting relatively stable
structural fundamentals across economies. In contrast, the green-technology share (GT)
varies meaningfully across country-years, indicating cross-country differences in the
adoption of clean innovation. The two policy-uncertainty measures (EPU and ESG
uncertainty) are right-skewed and heavy-tailed, consistent with episodic spikes during

periods of geopolitical or financial stress. Finally, Energy consumption changes (AENC)

show the largest variability, underscoring the critical role of energy dynamics in shaping
the green growth trajectory.

Table 2: Summary statistics

AGG (in billions) PCI ECI EPU ESG GT AENC
Mean 53.1 60.99 2.15 132.82 29.46 29.79 -3.90
Std. Dev 265 6.63 0.88 80.33 8.43 10.83 199.09
Min -2700 39.5 0.33 27 741886  10.37 -1955.85
25% -17 57.2 1.47 80.77 23.94 22.41 -32.18
50% 33.1 62.3 2.36 111.63 29.31 27.73 5.53
75% 106 66.5 2.78 155.60 33.96 34.96 34.38
Max 1090 71.1 3.87 669.01 59.28 79.55 1334.18
Jarque-Bera 264.74* 39.78* 19.19* 1429.36* 23.57* 194.46* 25542
Obs. 341 359 359 359 359 359 341

Note: *, ** *** denote 10%, 5%, 1% levels.

The correlation heatmap in Figure 1 illustrates the pairwise associations among the
main variables. In particular, AGG comoves positively with PCI, ECI, and GT which is
consistent with greener growth in economies with stronger productive structures, more
complex export baskets, and greener innovation portfolios. Conversely, AGG is negatively
associated with EPU and ESG uncertainty, reflecting the drag from uncertainty on long-
horizon green investment. Changes in energy consumption (AENC) also exhibit a weak
but discernible link to AGG, reflecting the energy intensity of growth adjustments. Overall,
the correlations are moderate in magnitude, supporting the need for more advanced
econometric methods to capture heterogeneous effects beyond linear associations.

Table 3 reports results from the panel quantile unit root tests across the conditional
distribution (0.1-0.9 quantiles). The test statistics consistently reject the unit root null for
all variables at conventional significant levels, confirming their stationarity throughout
the distribution. This robustness across quantiles strengthens confidence in our
empirical framework, as it indicates that the variables’ statistical properties are stable
not only on average but also at different points of the conditional distribution. More
specifically, the rejection of unit roots for AGG, PCI, ECI, GT, EPU, ESG, and AENC ensures
the validity of subsequent panel estimations without the risk of spurious regressions.
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Figure 1: Correlation matrix heatmap
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Figure 2 presents Sim and Zhou (2015) results. The PCI panel shows a clear state-
dependent pattern. Specifically, at low PCI quantiles, coefficients are negative across most
of the AGG distribution, indicating that weak productive structures constrain green
growth. As PCl rises, the coefficients turn positive, particularly at higher AGG quantiles,
suggesting that strong productive capacity amplifies gains when economies are already
on a greener trajectory. This asymmetry highlights a threshold effect, where only
sufficiently high levels of productive capacity generate sustained improvements in green
output, underscoring the importance of structural capacity building for long-term green
growth.

The ECI panel indicates that low levels of ECI have little or even negative impact on
growth-adjusted green output ( A GG), reflecting limited green benefits in less
sophisticated economies. As ECI rises, the coefficients turn positive and strengthen,
particularly at higher AGG quantiles, suggesting that complex production and export
structures amplify green growth when economies are already on a stronger trajectory.
This asymmetric pattern highlights that advancing economic complexity is a key driver
of sustained green growth, especially in high-performing states.
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Table 3: Panel quantile unit root test (ADF test)

Quantile Variable t-statistic p-value Quantile Variable t-statistic p-value
Quantile 0.1  AGG -12.6128  0.0000 Quantile 0.1 ECI -3.193 0.0204
Quantile 0.2  AGG -12.6128  0.0000 Quantile 0.2 ECI -3.193 0.0204
Quantile 0.3  AGG -12.6128  0.0000 Quantile 0.3 ECI -3.193 0.0204
Quantile 0.4  AGG -12.6128  0.0000 Quantile 0.4 ECI -3.193 0.0204
Quantile 0.5  AGG -12.6128  0.0000 Quantile 0.5 ECI -3.193 0.0204
Quantile 0.6  AGG -12.6128  0.0000 Quantile 0.6  ECI -3.193 0.0204
Quantile 0.7  AGG -12.6128  0.0000 Quantile 0.7 ECI -3.193 0.0204
Quantile 0.8  AGG -12.6128  0.0000 Quantile 0.8  ECI -3.193 0.0204
Quantile 0.9  AGG -12.6128  0.0000 Quantile 0.9 ECI -3.193 0.0204
Quantile 0.1  EPU -6.5855 0.0000 Quantile 0.1 ESG -9.0551 0.0000
Quantile 0.2  EPU -6.5855 0.0000 Quantile 0.2 ESG -9.0551 0.0000
Quantile 0.3  EPU -6.5855 0.0000 Quantile 0.3 ESG -9.0551 0.0000
Quantile 0.4 EPU -6.5855 0.0000 Quantile 0.4 ESG -9.0551 0.0000
Quantile 0.5 EPU -6.5855 0.0000 Quantile 0.5 ESG -9.0551 0.0000
Quantile 0.6  EPU -6.5855 0.0000 Quantile 0.6 ESG -9.0551 0.0000
Quantile 0.7 EPU -6.5855 0.0000 Quantile 0.7 ESG -9.0551 0.0000
Quantile 0.8 EPU -6.5855 0.0000 Quantile 0.8 ESG -9.0551 0.0000
Quantile 0.9  EPU -6.5855 0.0000 Quantile 0.9 ESG -9.0551 0.0000
Quantile 0.1  GT -5.9717 0.0000 Quantile 0.1 PCI -3.2912 0.0153
Quantile 0.2  GT -5.9717 0.0000 Quantile 0.2 PCI -3.2912 0.0153
Quantile 0.3  GT -5.9717 0.0000  Quantile 0.3 PCI -3.2912 0.0153
Quantile 0.4  GT -5.9717 0.0000  Quantile 0.4 PCI -3.2912 0.0153
Quantile 0.5  GT -5.9717 0.0000  Quantile 0.5 PCI -3.2912 0.0153
Quantile 0.6 GT -5.9717 0.0000  Quantile 0.6 PCI -3.2912 0.0153
Quantile 0.7  GT -5.9717 0.0000  Quantile 0.7 PCI -3.2912 0.0153
Quantile 0.8 GT -5.9717 0.0000  Quantile 0.8 PCI -3.2912 0.0153
Quantile 0.9  GT -5.9717 0.0000  Quantile 0.9 PCI -3.2912 0.0153
Quantile 0.1  AENC -22.8499 0.0000

Quantile 0.2  AENC -22.8499 0.0000

Quantile 0.3  AENC -22.8499 0.0000

Quantile 0.4 AENC -22.8499 0.0000

Quantile 0.5 AENC -22.8499 0.0000

Quantile 0.6  AENC -22.8499 0.0000

Quantile 0.7  AENC -22.8499 0.0000

Quantile 0.8 AENC -22.8499 0.0000

Quantile 0.9  AENC -22.8499 0.0000

The surface of EPU panel exhibits a clear downward slope along the EPU dimension,
indicating that higher levels of uncertainty consistently depress green growth outcomes.
At low EPU quantiles, the coefficients are positive across most AGG quantiles, suggesting
that policy stability supports green expansion. However, as EPU rises, the relationship
turns negative throughout the distribution, with the strongest adverse effects observed
in both the lower and upper tails of AGG. These results highlight the state-dependent
nature of uncertainty shocks, with both constrain recovery in weak green-growth states
and erode momentum in stronger ones, underscoring the importance of a stable policy

environment for sustaining long-horizon green investment.
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Figure 2: Sim and Zhou (2015) quantile-on-quantile results
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The surface of ESG panel reveals a clear negative slope along the ESG dimension,
showing that higher levels of uncertainty systematically weaken growth-adjusted green
output (AGG). At low quantiles of ESG uncertainty, coefficients remain positive across
most AGG quantiles, indicating that stability in sustainability frameworks supports green
growth. However, as uncertainty increases, the relationship turns markedly negative
across the distribution, with particularly strong adverse effects in both the lower and
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upper tails of A GG. These results highlight that ESG-related uncertainty not only
constrains recovery in weak green-growth states but also erodes momentum in stronger
ones, emphasizing the importance of credible and stable ESG framework for sustaining
long-term green investment.

The results of the green technology share (GT) show thatlow levels of GT provide limited
benefits for growth-adjusted green output (AGG), but as GT rises the coefficients turn
strongly positive across the distribution. The strongest effects occur when both GT and
AGG are high, indicating that deeper penetration of green technologies amplifies existing
green growth momentum through spillovers and scale effects. This highlights the pivotal
role of sustained green innovation in driving and reinforcing long-term sustainable
growth.

The results of changes in energy consumption panel (AENC) reveal a nonlinear pattern.
Specifically, at low AENC quantiles, coefficients are flat and negligible, indicating that
modest shifts in energy use do not meaningfully affect growth-adjusted green output
(AGG). By contrast, at higher AENC quantiles the coefficients rise sharply, particularly for
economies in stronger green-growth states, suggesting that large increases in energy
demand are associated with amplified growth outcomes. This threshold-driven effect
underscores the critical importance of directing energy expansions toward clean sources
to ensure that rising demand supports rather than undermines long-term green growth.

Figure 3 reports Han et al. (2016) cross-quantilogram results. For PCI and ECI across
different lags, the patterns show that PCI exhibits weak or negative short-run dependence
with growth-adjusted green output (AGG), with positive effects emerging only at longer
horizons and in higher quantiles, indicating a delayed and state-dependent role. By
contrast, ECI displays strong and persistent positive dependence across mid-to-upper
quantiles at all lags, suggesting that greater economic complexity reinforces green
growth more immediately and consistently. These results highlight that while productive
capacity contributes gradually, economic complexity provides a more robust and timely
driver of sustained growth.

In terms of the cross-quantilogram estimates for EPU and ESG uncertainty, the results
show that EPU exerts strong negative dependence on growth-adjusted green output (AGG)
in the short run, particularly at lower quantiles, but its effects dissipate quickly over
longer lags. In contrast, ESG-related displays more persistent and widespread negative
dependence across quantiles and horizons, constraining recovery in weak states and
curbing momentum in strong ones. This asymmetry highlights that while policy
uncertainty delivers sharp but short-lived shocks, ESG uncertainty has a more durable
dampening effect, underscoring the importance of stable sustainability frameworks for
long-term green growth.

Regarding to the cross-quantilogram estimates for GT and AENC, our results show that
GT exhibits persistent positive dependence with AGG, particularly at mid-to-upper
quantiles and across short-to-medium lags, indicating that green technology adoption
quickly reinforces and sustains green growth. By contrast, AENC displays a more
heterogeneous pattern. In particular, short-run increases in energy use are positively
associated with AGG, especially in stronger states, but these effects weaken and even turn
negative at longer horizons. This contrasts highlights that while green innovation
provides a durable engine for sustainable growth, energy-driven expansions are more
conditional and transient.
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Figure 3: Cross-quantilogram heatmap results for lags 1, 2, 4
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Figure 3: Continued
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Figure 3: Continued
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Overall, our cross-quantilogram evidence underscores that structural drivers such as
complexity and green innovation exert durable positive effects, whereas uncertainty acts
as a significant drag, and energy consumption dynamics yield conditional, short-lived

gains.
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Table 4: Balcilar et al. (2016) causality-in-quantile results

Quantile PCI ECI EPU ESG GT AENC
0.1 -2100™ -63000™ -960™ -4400™ -4600™ 585
0.2 -640™ -21000™ -310™ -1200™ -1100™ 571
0.3 -53 -560 -82” -120 15.69 571
0.4 281™ 9890 53.69 523 450" 571
0.5 551 18700 159 1090 816™ 571
0.6 889 29000 270™ 1620™ 1460 571
0.7 1500 41500 451" 2530™ 2400™ 571
0.8 2130™ 71900 808 4230™ 4190™ 571
0.9 4570™ 131000 1620™ 9240™ 8490™ 571

Note: All values are reported in units of millions. Asterisks denote statistical significance at
conventional levels: ***p < 0.01, **p < 0.05, *p < 0.1.

Table 4 reports the causality-in-quantile test results of Balcilar et al. (2016), showing
how the determinants of AGG vary across the conditional distribution. The findings reveal
substantial heterogeneity and asymmetry. Productive capacity (PCI) exerts negative
effects at lower quantiles, indicating that weak productive structures constrain green
growth in fragile states, but becomes strongly positive at higher quantiles, suggesting a
threshold effect where capacity building reinforces greener trajectories. Economic
complexity (ECI) with coefficients rising sharply toward the upper quantiles,
underscoring the robust role of structural sophistication in supporting sustainable
growth. By contrast, economic policy uncertainty (EPU) and ESG-related uncertainty
(ESG) are predominantly negative at the lower quantiles, highlighting their destabilizing
role in weak states. Green technology (GT) also displays threshold dynamics. In particular,
initially negative at lower quantiles, but turning strongly positive from the median
upwards, with the largest effects in the upper tail, reflecting the amplifying role of clean
innovation once adoption passes a critical mass. Finally, changes in energy consumption
(AENC) are positive and significant across all quantiles with relatively stable coefficients,
pointing to a uniform association that may capture scale effects rather than clean
transition per se. Overall, our causality-in-quantile results highlight that structural
drivers (ECI, GT, PCI) act as engines of green growth primarily in stronger performing
states, while uncertainty dampens outcomes most in weaker states, and energy dynamics
exert a stable but less discriminating influence across the distribution.

Figure 4 plots the causality-in-quantile test results. For the PCI panel, the result show no
significant causal effect on AGG in the lower quantiles, but the test statistic rises above
the 5% and 10% critical values from the 0.4 quantile onwards, remaining significant
through the mid-to-upper tails. This indicates that productive capacity exerts a strong
predictive influence on green growth when economies are already on moderate to high
growth trajectories, underscoring its state-dependent role in reinforcing sustainable
performance.

For the ECI panel, the test statistic is below the critical values at lower quantiles, but
from the 0.4 quantile onwards it rises above the 5% threshold and increases sharply,
remaining highly significant through the upper tail. This indicates that economic
complexity exerts a strong and persistent causal influence on AGG in moderate and high
growth regimes, underscoring its central role in sustaining green performance.
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Figure 4: Balcilar et al. (2016) causality-in-quantile results

Note: The y-axis presents test statistics, and the x-axis is quantiles of independent variables.

The test statistic for the EPU panel is below the critical values at lower quantiles but
crosses the 5% threshold from the 0.4 quantiles onwards, rising sharply toward the
upper tail. This indicates that economic policy uncertainty has a significant causal effect
on AGG in moderate and high growth regimes, with the influences strongest at the upper
quantiles.

For the ESG-related uncertainty panel, the test statistic lies below the critical values at
lower quantiles, indicating no significant causality in weak green growth states. From the
0.4 quantile onwards, the statistic surpasses the 5% threshold and remains above it
through the upper quantiles, demonstrating strong and persistent causality in moderate
and high growth regimes. This suggests that ESG-related uncertainty exerts a significant
and sustained influence on AGG, particularly when economies are already performing
strongly.
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The test statistic for the GT panel remains below the critical values at lower quantiles
but crosses the 5% threshold around the 0.3 quantile and continues to rise steadily,
remaining well above the critical region across higher quantiles. This pattern indicates a
significant causal relationship between green technology and AGG in moderate and high
growth regimes. The results highlight the strengthening role of green innovation as
economies transition toward higher levels of sustainable growth.

Regarding to the AENC panel, the test statistic remains well above the 5% and 10%
critical values across all quantiles, indicating a strong and statistically significant causal
relationship between changes in energy consumption and AGG throughout the
distribution. The relatively flat pattern across quantiles suggests a consistent influence
on energy dynamics on green growth, with the effect most pronounced in the mid-range
quantiles. This implies that variations in energy use exert a stable and pervasive impact
on green growth, regardless of the economy’s performance state.

The wavelet-quantile regression heatmap (Figure 5) illustrates how the relationship
between each variable of interests and AGG varies across both quantiles (horizontal axis)
and time-frequency scales (vertical axis). For the PCI panel, at short-term scales, the
coefficients are relatively small and mostly neutral to mildly positive at lower quantiles,
implying that short-run variations in productive capacity have limited or short-lived
effects on green growth, particularly in weaker performance states. However, the
relationship strengthens markedly at medium-term scales, where positive coefficients
dominate the middle quantiles (0.4-0.6), indicating that structural capacity
improvements begin to exert a stabilizing and supportive influence on sustainable
growth over intermediate horizons. At the long-term scale, the coefficients are
consistently large and positive—especially in the higher quantiles (0.7-0.9)—
demonstrating that productive capacity has a strong and persistent contribution to green
growth in the long run.

For the economic complexity panel, at short-term scales, the coefficients are mostly
small and positive toward the higher quantiles (07-0.9), suggesting that increases in
complexity produce immediate but modest benefits for high-performing economies. At
medium-term scales, the coefficients become more stable and largely positive,
particularly in mid-to-upper quantiles, indicating that structural sophistication enhances
green growth cumulative diversification and innovation effects. In contrast, long-term
scales show stronger and more uniformly positive coefficients across nearly all quantiles,
confirming that complexity plays a sustained role in supporting green growth over longer
horizons.

Regarding to the economic policy uncertainty panel, at shot-term scales, the coefficients
are predominantly negative, especially in the lower and middle quantiles, suggesting that
shoer-run spikes in policy uncertainty hinger green growth, particularly in weak and
moderate performance states. At the medium-term scale, the coefficients shift toward
neutral or slightly positive levels at higher quantiles, implying that moderate uncertainty
may encourage adaptive policy and investment adjustments in stronger economies. Over
the long term, the coefficients become consistently positive across nearly all quantiles,
with the strongest effects observed in upper quantiles (0.7-0.9). This pattern indicates
that in the long run, economies with established green frameworks are better able to
absorb or even capitalize on policy uncertainty, transforming it into innovation-driven
adaptation.
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Figure 5: Adebayo and Ozkan (2024) wavelet-quantile regression results
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For the ESG-related uncertainty panel, at short-term scales, the coefficients are largely
negative across the distribution, indicating that spikes in ESG uncertainty immediately
suppress growth-adjust green output, particularly in lower and mid quantiles. Moving to
medium-term scales, the coefficients become less negative and occasionally positive in
the higher quantiles, suggesting that as uncertainty stabilizes, well-performing
economies can partially offset its adverse impact through policy adaptation and stronger
institutional frameworks. At long-term scales, the coefficients shift to consistently
positive, especially in the upper quantiles, implying that sustained improvements in ESG
governance and disclosure ultimately support long-run green growth performance.

For the green technology panel, at short-term scales, the coefficients are mostly negative
across all quantiles, indicating that short-run increases in green technology investment
may initially impose adjustment costs or exhibit delayed benefits for green growth. In the
medium-term scales, the coefficients become neutral to moderately positive, particularly
in mid-to-upper quantiles, suggesting that as technological diffusion progresses,
innovation begins to stimulate greener outcomes. At long-term scales, the coefficients
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turn strongly positive, with the highest values appearing in the upper quantiles, implying
that mature green technology adoption drives sustained improvements in green growth,
especially in already high-performing economies.

Regarding to the changes in energy consumption panel, at short-term scales, the
coefficients are predominantly negative across all quantiles, suggesting that rapid or
short-lived fluctuations in energy consumption hinder green growth, particularly in
lower-performing states. At the medium-term scale, the coefficients become positive,
especially in the middle and upper quantiles, indicating that stable and moderate
increases in energy use contribute to AGG as economies transition toward cleaner
production and efficiency gains. At long-term scales, the coefficients remain positive and
stable across nearly all quantiles, implying a persistent and broad-based contribution of
energy consumption to green growth over time, likely reflecting structural shifts toward
renewable and efficient energy systems.

Figure 6 illustrates the strength and direction of the wavelet quantile correlation
between each variable of interest and AGG across time-frequency scales and quantiles. At
short-term scales, the correlations are weak to moderately positive (ranging from 0.18 to
0.29), indicating that fluctuations in productive capacity exert only limited immediate
influence on green growth. In the medium-term scale, correlations remain mostly weak
or near zero across quantiles, implying that short- and medium-horizon co-movements
between PCI and AGG are not particularly strong or persistent. However, at long-term
scales, the correlations strengthen considerably, especially in the lower quantiles (up to
0.75), revealing a stable and positive long-run association between productive capacity
and green growth. The middle quantiles (0.4-0.6) show mild attenuation, suggesting that
the relationship is most pronounced at the extremes of the growth distribution.

For the ECI panel, at short-term scales, correlations are consistently positive and
moderately strong (0.07-0.15) across all quantiles, suggesting that short-run fluctuations
in economic complexity are closely aligned with movements in green growth. In the
medium-term, coefficients remain positive and relatively stable (around 0.02-0.03),
implying a sustained but moderate co-movements over intermediate horizons. At the
long-term scale, the pattern strengthens further, with positive correlations dominating
mid-to-upper quantiles and reaching up to 0.61 in the highest quantile. This indicates that
the link between economic complexity and green growth is persistent and intensifies
over longer horizons, particularly for economics in higher growth rates.

For the EPU panel, at short-term scales, the correlations are predominantly negative
(around -0.44 t0 -0.17), especially in the lower quantiles, indicating that short-run spikes
in policy uncertainty hinder green growth, particularly for economies with weaker green
performance. In the medium-term, the correlations weaken in magnitude and become
slightly positive at higher quantiles, suggesting that economies with stronger green
growth may partially absorb short-lived uncertainty shocks. At long-term scales, the
correlations turn mildly positive (up to 0.14) across most quantiles, implying that the
negative short-run impact of policy uncertainty dissipates over time and that stable
institutional frameworks may mitigate its adverse effects.

For the ESG panel, at short-term scales, correlations are strongly negative across all
quantiles (around -0.48 to -0.27), indicating that immediate fluctuations in ESG
uncertainty significantly hinder green growth, particularly in low-performing economies.
Over the medium-term, the correlations weaken in magnitude and turn mildly positive in
upper quantiles, suggesting that the adverse effects of ESG uncertainty gradually
diminish as economies adapt through improved disclosure and governance. At long-term
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scales, the correlations become distinctly positive (up to 0.42), especially at lower
quantiles, signifying that sustained stability and clearer ESG frameworks contribute
positively to long-run green growth outcomes.

Figure 6: Kumar and Padakondla (2022) wavelet-quantile correlation
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For the green technology panel, at short-term scales, the correlations are mildly positive
(around 0.11-0.13), suggesting that short-run green technology developments have an
immediate but modest association with green growth. Over the medium-term, the
correlations strengthen substantially, particularly in the lower and middle quantiles (up
to 0.29), indicating that as technological diffusion takes hold, the positive relationship
between green innovation and green growth becomes more pronounced. At long-term
scales, the correlations remain positive in most quantiles but weaken slightly toward the
upper tail, implying that while the green technology-growth nexus persists over time, its
marginal contribution stabilizes in highly developed green economies.

Regarding to the energy consumption panel, at short-term scales, correlations are
strongly positive across all quantiles, indicating that short-run changes in energy use are
closely aligned with green growth dynamics, possibly reflecting energy-driven
production responses or transitional energy demand effects. At the medium-term scales,
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the correlations remain positive but slightly moderate (0.33-0.47), suggesting a more
balanced relationship as economies adjust toward cleaner and more efficient energy
structures. Over the long-term scale, correlations weaken further and turn mildly
negative (-0.44 to -0.37), implying that persistent increases in energy consumption may
eventually exert downward pressure on sustainable growth, potentially due to resource
constraints or the environmental costs of prolonged energy dependence.

5. Conclusion

This paper examined how productive capacities, economic complexity, green
technology, and different forms of uncertainty shape green growth in 18 OECD countries
between 2003 and 2022, using green GDP as the main indicator of performance. The
results show that green growth is not driven by single factors in isolation but by the
interaction between structural strength, innovation capacity and a stable policy
environment. The effects are also clearly nonlinear and state-dependent: what matters
for countries at the lower end of the green growth distribution is not always the same as
what matters for those already performing well.

First, we find that productive capacity and economic complexity support green growth,
but their contribution is strongest once a country has already reached a certain level of
structural development. At low quantiles of productive capacity, green growth is often
constrained, while at higher levels, productive capacity amplifies gains and helps to
sustain a greener trajectory. Economic complexity shows an even more robust and
persistent positive effect, especially in the upper part of the green growth distribution.
This suggests that moving towards more knowledge-intensive and diversified productive
structures is central for long-run green growth.

Second, green technology plays a pivotal but threshold-driven role. Low levels of green
technology and isolated innovations provide only limited benefits and may even entail
short-run adjustment costs. When the share of green technologies becomes sizeable,
however, their impact on green GDP turns strongly positive and reinforces existing green
growth momentum. This pattern is consistent with diffusion and scale effects: once clean
technologies are embedded in production systems, they support both higher output and
lower environmental damage.

Third, uncertainty is a clear drag on green growth, especially in weaker states. Economic
policy uncertainty and ESG-related uncertainty both tend to depress green GDP when
green growth is already fragile. Policy uncertainty shocks have sharp but relatively short-
lived impacts, whereas ESG uncertainty is more persistent and affects a wider range of
quantiles and horizons. These results underline that unclear or unstable policy signals,
including around ESG rules and climate commitments, can delay long-term green
investment and weaken the credibility of the transition.

Fourth, changes in energy consumption are positively associated with green GDP across
quantiles, but this relationship is conditional. In the short term, rising energy use tends
to coincide with higher growth, reflecting scale effects. Over the longer term, the benefits
depend on whether additional energy demand is met from cleaner and more efficient
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sources. Without continued improvements in energy mix and efficiency, higher energy
use can lead to environmental stress that may undermine future green growth.

Taken together, the evidence suggests several policy implications for OECD countries. In
particular, firstly, build and rebalance productive capacities. Policymakers should treat
productive capacities as a foundation for green growth. This means sustained investment
in human capital, transport and digital infrastructure, reliable energy systems and
effective institutions. Since the positive effects of productive capacity are strongest at
higher levels of green growth, there is a risk that existing leaders pull further ahead.
Targeted support for lagging regions and sectors is needed so they can cross the
threshold at which productive capacity begins to reinforce green outcomes rather than
simply raising conventional output.

Second, use industrial policy to push economic complexity in a green direction. The
strong link between economic complexity and green GDP implies that industrial and
innovation policy should focus on developing more complex, low-carbon export baskets
rather than simply expanding any high-tech activity. Support for sectors that combine
high value added with low material and carbon intensity, such as advanced
manufacturing, digital services and clean technology supply chains, can raise both
complexity and environmental performance. Trade and competition policy should also
aim to keep markets open enough for firms to learn, upgrade and participate in green
global value chains.

Third, scale and diffuse green innovation, not only invent it. The results on green
technology indicate that small pockets of green patents are not enough; benefits arise
when green technologies reach sufficient scale and diffusion. Policy thus needs to support
the full innovation cycle: basic R&D, demonstration projects, standards, deployment and
diffusion. Instruments may include targeted R&D grants, tax credits for clean investment,
green public procurement and risk-sharing through green investment banks and
development finance institutions. Policies should pay attention to diffusion to SMEs and
lagging regions, not only to technological frontiers in a few large firms or cities.

Fourth, reduce policy and ESG uncertainty through clear, credible frameworks. Because
both economic policy uncertainty and ESG uncertainty depress green growth, especially
in weaker states, a central policy task is to provide stable and predictable rules. This
includes: i) setting clear and time-consistent climate targets and transition pathways; ii)
avoiding frequent reversals in carbon pricing, subsidies and regulations; iii) harmonising
ESG disclosure standards and supervisory expectations across agencies; and iv)
communicating changes with enough lead time for firms and investors to adjust. A
credible, predictable policy and ESG framework lowers risk premia, lengthens planning
horizons and encourages firms to commit capital to long-term green projects.

Fifth, align energy demand with a clean and efficient supply. The positive but conditional
role of energy consumption suggests that energy policy should not aim to reduce energy
use mechanically, but to change how energy is produced and used. Investments in
renewable generation, grid upgrades, storage, demand-side management and energy
efficiency standards can ensure that higher energy demand, where it occurs, is met in
ways consistent with green growth. At the same time, phasing out fossil-fuel subsidies
and tightening performance standards for carbon-intensive assets can reduce the risk
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that energy-driven growth leads to environmental lock-in. Support for households and
workers most exposed to the transition will be important for maintaining social and
political support.

Last, use OECD experience to guide and support broader transition. Because OECD
economies are often early adopters of green policies and ESG frameworks, their
experiences in managing productive capacities, complexity, green innovation and
uncertainty can provide useful lessons for other countries. Sharing data, tools (such as
green GDP metrics and productive capacity indices), and policy designs can reduce
learning costs elsewhere and help to avoid repeated policy mistakes. At the same time,
OECD countries should recognise that their own green growth is interconnected with the
rest of the world through trade, technology transfer and finance, and design policies that
support, rather than hinder, a wider global transition.

Overall, the findings indicate that green growth in advanced economies is not automatic.
It depends on the long-run development of structural and technological capacities,
combined with credible and stable policy signals that lower uncertainty around the
transition. The challenge for policymakers is to manage these elements together, rather
than treating productive capacity, innovation, ESG and energy use as separate agendas.
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