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Abstract	

  This	paper	studies	what	drives	green	growth	in	18	OECD	countries	from	2003	to	2022	
using	 green	 GDP	 as	 the	main	measure.	We	 focus	 on	 productive	 capacities,	 economic	
complexity,	green	technology,	economic	policy	uncertainty,	ESG	uncertainty,	and	energy	
use.	 To	 capture	 nonlinear	 and	 state-dependent	 effects,	 we	 apply	 quantile-based	 and	
wavelet	 methods.	 We	 find	 that	 stronger	 productive	 capacities	 and	 higher	 economic	
complexity	support	green	growth,	especially	once	countries	reach	higher	development	
states.	A	larger	share	of	green	technology	patents	also	boosts	green	GDP	after	it	passes	a	
certain	threshold.	By	contrast,	higher	economic	policy	and	ESG	uncertainty	reduce	green	
growth,	 in	particular	when	green	performance	is	already	weak.	Changes	in	energy	use	
are	positively	linked	to	green	GDP,	but	the	long-run	gains	depend	on	cleaner	and	more	
efficient	energy	supply.	The	 results	 suggest	 that	 stable	policies,	 green	 innovation,	 and	
structural	upgrading	are	central	for	sustained	green	growth. 
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1.	Introduction	
	
  Green	growth	is	a	favorable	solution	to	tackle	current	challenges	by	matching	economic	
progression	 with	 the	 protection	 of	 the	 environment.	 Green	 growth	 has	 the	 ability	 to	
protect	the	planet.	Moreover,	it	fosters	inclusive	and	equitable	development	(Fay,	2012).	
Green	 growth	 is	 aligned	 with	 fostering	 renewable	 energy	 use,	 expanding	 sustainable	
agricultural	 practices	 and	 leads	 to	 conservation.	 Green	 growth	 	 associates	 with	 the	
objectives	of	SDGs.	It	is	focused	on	tacking	climate	change,	protection	of	marine	life	and	
preservation	of	terrestrial	biodiversity	(SDG13,14,15)	(Kallqvist,	2021;	Qin	et	al.,	2023).	
Green	growth	is	also	associated	with	poverty	eradication,	reduction	in	inequalities	and	
decent	work	(SDG	1,	8,	10)	(OECD,	2018).	Green	growth	is	associated	with	sustainable	
technologies,	 opportunities	 for	 green	 jobs	 that	 ameliorates	 poverty	 and	 leads	 to	 the	
development	of	vibrant	economies	(Zhang,	et	al.,	2023;	Yikun	et	al,	2023;	Yasmeen	et	al,	
2023).	

		Further,	green	growth	has	the	capacity	to	recuperate	the	health	and	well-	being	of	the	
population	across	the	world.	Green	growth	builds	more	resilient	societies	by	addressing	
issues	 on	 air	 and	 water	 pollution	 (Adams,	 2008).	 Green	 growth	 ensures	 long	 term	
stability	 and	 enhances	 competitiveness.	 It	 further	 addresses	 SDG	9	 (Xing	 et	 al.,	 2024;	
Wahab	et	al.,	2024;	Simeon	et	al.,	2024).	Green	growth	represents	the	trajectory	where	
economic	prosperity	and	environmental	sustainability	is	achieved.	It	enables	to	achieve	
the	SDG	goals	in	an	impactful	way.	

		There	is	an	urgent	need	to	strengthen	productive	capacities	for	laying	the	groundwork	
for	green	growth.	Building	productive	capacities	enables	more	ef^icient	use	of	resources	
and	cleaner	technologies.	When	a	country	improves	productive	capacity	in	particular	for	
areas	 like	 energy	 ef^iciency,	 natural	 capital	 management	 and	 institutional	 quality,	 it	
creates	opportunities	to	separate	economic	expansion	and	environmental	degradation.	
The	Productive	Capacity	Index	is	a	multidimensional	tool.	It	was	developed	by	UNCTAD	
to	assess	the	ability	of	the	economy	to	produce	goods	and	services.	The	policy	makers	
should	use	productive	capacity	index	to		identify	the	strengths	and	weaknesses	in	national	
production	system	and	create	pathways	for	inclusive	and	sustainable	growth.	

		Further	green	growth	can	be	 improved	 through	green	 technology.	Using	eco-friendly	
technologies	in	the	energy	sector	fosters	green	growth	(Su	et	al.,	2020;	Ullah	et	al.,	2021).	
Technology	 innovation	will	provide	efficiency	 in	energy	production	and	 its	utilization.	
Further,	it	will	enable	conservation	of	natural	resources	and	minimize	carbon	emissions.	
It	 allows	 the	 simultaneous	 achievement	 of	 economic	 and	 ecological	 goals	 and	 fosters	
economic	expansion.	Technology	advancement	is	crucial	to	industrial	transformation	and	
addressing	environmental	challenges	will	be	costly	without	it.		The	OECD	countries	have	
integrated	growth	in	their	national	and	bilateral	policies.	The	OECD	countries	includes	
green	growth	in	ecological	performance	evaluations	and	technology	and	capital	market	
reviews.	

  Green	 technology	 stimulates	 sustainable	 development.	 It	 identifies	 environmentally	
friendly	sources	of	growth,	develops	environmental	friendly	industries	and	creates	jobs	
and	technologies	(Ghisetti	et	al.,	2017).	To	attain	green	growth	 it	 is	essential	 to	 foster	
investments	and	innovations	that	signify	the	foundation	of	sustainable	development	and	
enhance	economic	opportunities	(Przychodzen	et	al,	2020).	The	advancement	of	studies	



 3 

on	 green	 growth	 require	 intense	 research	 on	 the	 conditions	 of	 its	 formation	 and	 its	
impact	 on	 sustainable	 development.	 The	 stakeholders	 who	 are	 interested	 in	 green	
economic	 development	 include	 business,	 the	 planners	 and	 the	 public	 who	 set	
environmental	goals	for	sustainable	development	(Ramdhani	et	al.,	2017).	

		Investments	in	Environmental	Social	Governance	is	essential	for	driving	towards	green	
growth.	According	 to	Feng	and	Yuan	 (2024),	 the	 investments	 integrates	 sustainability	
factors	 into	 decision	making.	 It	 motivates	 businesses	 to	 	 implement	 environmentally	
responsible	 practices,	 uphold	 social	 standards	 and	 establish	 strong	 governance.	 The	
inclusion	of	ESG	criterion	in	investment	strategies	enhances	capital	flows	to	companies	
that	highlight	environmental	stewardship,	social	responsibility	and	ethical	governance.	
Such	 practices	 aligns	 investment	 portfolio	 with	 sustainable	 values	 and	 also	 impacts	
corporate	behavior	positively	(Feng	and	Yuan,	2024).	The	studies	by		Qian	and	Yu	(2024)	
and	Tan	et	al.	(2024)	deliberate	that	ESG	investments	fosters	green	growth	by	directing	
financial	 resources	 to	 enterprises	 dedicated	 to	 sustainable	 practices.	 Such	 processes	
promote	a	faster	transition	to	an	environmentally	conscious	economy.		

  The	inspiration	for	the	present	study	is	taken	from	the	serious	 juncture	at	which	the	
present	global	economy	stands	today:	climate	change	and	environmental	deterioration	
are	posing	up	challenges	that	have	not	been	observed	earlier.	As	the	nations	take	up	the	
challenges,	the	transformation	to	green	growth	arise	not	as	a	policy	option	but	crucial	for	
sustainable	 development.	 Often	 the	 OECD	 countries	 set	 an	 example	 at	 the	 frontier	 of	
technology	and	economic	development	with	green	technology,	productive	capacities	and	
ESG.	 It	 has	 therefore	 become	 necessary	 to	 undertake	 a	 study	 driven	 by	 the	 need	 to	
understand	the	synergistic	effects	of	these	factors	in	driving	the	green	growth	program.	
It	 is	 against	 this	 background	 that	 this	 study	 seeks	 to	 decipher	 that	 with	 productive	
capacity,	green	technology	initiatives	and	ESG	may	foster	inclusive	economic	growth	that	
is	sustainable.	

  Against	the	above	background,	this	research	aims	to	establish	how	the	OECD	nations	
could	transform	into	green	economy	that	might	point	out	the	best	practices	that	other	
countries	may	follow.	The	study	might	signal	the	key	challenges	and	opportunities	for	the	
OECD	countries	towards	the	pathway	to	sustainability.	What	makes	this	study	important	
is	 its	 contribution	 to	 the	 expanding	 field	 of	 sustainable	 development.	 The	 study	 adds	
insights	to	the	understanding	of	environment	and	sustainability	and	 its	 interplay	with	
green	technology,	productive	capacities	and	ESG	framework.	This	study	helps	to	highlight	
the	process	by	which	the	OECD	countries	are	able	to	use	their	resources,	technological	
capabilities	 and	 ESG	 structures	 to	 lead	 green	 growth.	 The	 study	 suggests	 that	 green	
technology,	productive	capacities	and	ESG	have	critical	roles	and	enable	green	growth.	

  This	study	presents	a	perspective	by	combining	the	assessment	of	productive	capacities,	
green	 technology	 and	 ESG	 in	 the	 presence	 of	 economic	 complexity,	 economic	 policy	
uncertainty	 and	 energy	 consumption	 in	 the	 framework	 of	 green	 GDP	 analysis,	 in	 the	
context	 of	 the	OECD	 countries.	 Diverse	 from	 the	 earlier	 research	 that	 usually	 studies	
these	 aspects	 separately,	 the	 present	 analysis	 delves	 into	 their	 interdependence	 and	
impact	on	promoting	green	growth.	By	concentrating	on	the	OECD	countries	that	lead	in	
the	implementation	of	sustainable	policies,	this	research	correlates	essential	parameters	
that	impact	economic	growth	along	with	considering	the	preservation	of	ecology.	 	The	
research	is	conducted	on	empirical	data	using	reliable	statistical	methods	to	understand	
the	 nonlinear	 impacts	 of	 these	 factors	 on	 green	 growth.	 The	 study	 also	 provides	
important	policy	prescriptions	to	align	economic	and	environmental	goals	efficiently. 
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		The	rest	of	the	paper	is	designed		as	follows.	Section	2	reviews	the	related	earlier	studies.	
Section	3	explains	the	data,	models,	and	methods.	Section	4	discusses	the		major	empirical	
results.	Section	5	concludes	with	policy	recommendations.	

	
2.	Review	of	Literature	
	
		The	 literature	 argues	 that	 green	 growth	 is	 imperative	 for	 sustainable	 development.	
However,	there	are	various	factors	that	impact	green	growth.	Based	on	the	current	scope	
of	research,	the	explorations	in	the	literature	along	the	following	dimensions	is	made:	i)	
prodcutive	capacities	and	green	growth;	ii)	green	technology	and	green	growth;	and	iii)	
uncertainty	and	green	growth.	 		

2.1	Prodcutive	capacities	and	green	growth	
  The	UNCTAD	(2006,	2020)	discusses	that	the	concept	of	productive	capacities	has	three	
major	aspects.	It	includes	productive	resources,	entrepreneurial	abilities	and	production	
linkages	which	determine	the	country’s	ability	to	produce	goods	and	services	and	assists	
in	the	growth	of	the	economy.	Against	the	backdrop	of	this	de^inition	the	UNCTAD	has	
recognized	eight	broad	categories	de^ined	over	several	indicators	that	explain	the	main	
conduits	 through	which	a	 country	 could	develop	 its	productive	 capacities.	 	 The	major	
categories	include	transport	and	infrastructure;	energy;	information	and	communication	
technology;	 human	 capital;	 private	 sector;	 natural	 resources	 and	 structural	 change	 in	
production.	Thus	deliberations	about	the	effects	of	productive	capacities	on	green	growth	
involves	exploration	how	these	dimensions	relating	to	productive	capacities	affect	green	
growth.			

  Ahmed	et	al.	(2020)	argues	that	natural	resource	abundance	leads	to	degradation	of	the	
environment.	While	human	capital	reduces	environmental	degradation.	In	another	study	
Liu	et	al.,	(2023)	explored	the	effect	of	human	capital	on	green	growth	for	China	for	the	
period	 1991	 to	 2019.	 	 The	 results	 based	 on	 ARDL	 model	 indicate	 positive	 levels	 of	
education	on	green	growth	in	China	in	the	long	run.	In	a	similar	vein,	Rahim	et	al.		(2021)	
for	the	next	elven	countries	explored	the	importance	of	human	capital	in	facilitating	the	
growth	 process.	 In	 a	 similar	 vein,	Wang	 et	 al.,	 (2023)	 for	 Chinese	 provinces	 obtained	
positive	effects	of	human	capital	on	green	growth.	Their	study	highlights	the	importance	
of	government	decision	making	to	promote	human	capital	formation	in	the	context	of	the	
Chinese	provinces.	

		The	 literature	 has	 discussed	 how	 institutional	 quality	 impact	 a	 country’s	 ecological	
preservations	and	socioeconomic	expansion	(see	e.g.,	Ahmed	et	al.,	2022;	Salman	et	al.,	
2019;	Sarkodie	and	Adams,	2018).	The	study	by	Ahmed	et	al.,	(2022)	established	in	the	
context	of	South	Asian	economies	how	 institutional	quality	and	 ^inancial	development	
improves	long	term	green	growth.	In	a	similar	vein,	the	study	by	Osabohien	et	al.	(2022)	
demonstrated	 that	 green	 environment	 crucially	 impacts	 the	 overall	 welfare	 of	 the	
economy.	

  The	study	by	Lau	et	al.,	(2014)	in	the	context	of	Malaysia	found	that	good	institutions	are	
imperative	to	reduce	carbon	emissions	and	secure	green	growth.	 In	a	similar	vein,	 the	
study	by	Abid	(2017)	found	in	the	context	of	41	European	countries	and	58	Middle	East	
African	countries	that	good	institutions	are	crucial	to	foster	economic	growth	and	also	
assist	 in	 the	mitigation	 of	 carbon	 emissions.	 Again	 Bhattacharya	 et	 al.	 (2017)	 for	 85	
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developing	 	 and	 advanced	 countries	 found	 that	 institutions	 play	 a	 major	 role	 for	
mitigating	 carbon	 emissions	 and	 fostering	 economic	 growth.	 Further	 the	 study	 by	
Sarkodie	and	Adams	(2018)	for	South	Africa	obtained	that	disaggregated	and	aggregated	
energy	and	political	institutions	play	a	key	position	in	environmental	quality.		

  A	handful	of	studies	have	explored	the	importance	of	industrial	structure	for	fostering	
green	growth.	The	study	by	Zhu	et	al.	(2019)	for	Chinese	provinces	for	the	period	1999	to	
2016	found	industrial	structural	transformation	promotes	green	growth.		Li	et	al.	(2017)	
in	the	context	of	30	Chinese	provinces	found	that	changes	in	manufacturing	process	have	
negative	implications	on	total	factor	productivity.		

		In	 the	 light	 of	 the	 above	 discussion	we	may	 conclude	 that	 the	major	 components	 of	
productive	capacities	contribute	towards	green	growth.	Thus	the	̂ irst	testable	hypothesis	
of	the	study	is	framed:	

H1:It	is	likely	that	enhanced	productive	capacities	would	spur	green	growth	in	the	OECD	
countries.	

2.2	Green	technology	and	green	growth	
  Green	technology	is	an	operative	method	for	fostering	green	economic	growth	(Sohag	et	
al.,	2019b)	and	implementation	of	cleaner	technologies	signi^icantly	leads	to	a	decline	in	
carbon	 emanations	 (Yin	 et	 al.,	 2015).	 For	 steady	 and	 effective	 reduction	 in	 carbon	
emissions	 improvement	 in	 technological	 competence	 is	 required	 (Kwon	 et	 al.,	 2017).	
There	are	numerous	studies	in	the	literature	that	have	established	the	positive	effect	of	
green	 technology	on	green	growth	 (Ganda,	2019;	Chen	and	Lei,	2018;	Gu	et	al.,	 2019;	
Mensah	et	al.,	2018;	Jordaan	et	al.,	2017;	Sohag	et	al.,	2019a;	Nikzad	and	Sedigh,	2017;	
Wangetal,	 2019;	 Zhang	 et	 al.,	 2017).	 Some	 works	 have	 demonstrated	 how	 green	
technology	and	renewable	energy	lead	to	pollution	reduction	(Lin	and	Zhu,	2019a,	2019b;	
Gu	 et	 al.,	 2019;	 Sarkodie	 and	 Strezov,	 2018).	 The	 studies	 by	 (Alam	 and	Murad,	 2020;	
Sarkodie	 and	 Adom,	 2018)	 have	 documented	 that	 use	 of	 clean	 energy	 reduces	
environmental	pollution	and	thus	negative	externalities.	 In	sum,	green	technology	and	
innovations	 is	an	 important	 factor	that	reduces	energy	consumption	and	fosters	green	
growth.	Suki	et	al.	(2022)	using	a	sample	set	of	ASEAN	economies	for	the	period	1992	to	
2018	explored	the	effect	of	green	technology	innovation	on	green	growth.	The	^indings	
based	on	CS-ARDL	method	revealed	that	green	technology	has	negative	effects	on	carbon	
dioxide	 emissions.	 The	 study	 argues	 that	 there	 is	 an	 urgent	 need	 for	 research	 and	
development	to	improve	the	number	of	technological	patents.	

  The	study	by	Guo	et	al.	(2020)	documents	that	sustainable	technology	transfer	referred	
in	 the	 literature	 as	 “environmentally	 sound	 technology,”	 plays	 an	 important	 role	 in	
fostering	 sustainable	development	goals	at	 the	global	 and	 local	 context.	The	efforts	 to	
pursue	such	goals	will	reduce	the	negative	impacts	of	non	green		economic	development		
and	improve	the	standards	of	 living	(Ishak,	 Jamaludin	and	Abu,	2017;	UNCTAD,	2018).	
The	 importance	 of	 sustainable	 technology	 transfer	 has	 made	 nations	 aware	 of	 the	
importance	of	pollution	control	and	resource	conservation	(Hansen,	Li	and	Svarverud,	
2018).	Focusing	on	green	technology	had	directed	nations	towards	integrated	sustainable	
solutions	 that	 take	 into	 consideration	 environment,	 society	 and	 economy	 (UNCTAD,	
2018).	 Many	 countries	 have	 invested	 in	 infrastructure	 supporting	 and	 technology	
development	for	example	Clean	Energy	Finance	Corporation	(Austria),	National	Bank	for	
Economic	and	Social	Development	(Brazil),	Green	 Investment	Bank	(United	Kingdom),	
and	Green	Technology	Bank	(China)	(Geddes,	Schmidt	and	Steffen,	2018;	Mazzucato	and	
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Penna,	2016;	Guo	et	al.,	2020).	 	 In	addition	the	OECD	announced	12	green	 investment	
banks	 (OECD,	 2017a,	 2017b).	 Nonetheless	 the	 development	 and	 introduction	 of	
sustainable	 technology	 face	 political	 constraints	 (Yoshino	 et	 al.,	 2019),	 lack	 of	market	
awareness	(Agyemang	et	al.,	2018);	knowledge	and	awareness	(Liao and	Shi,	2018)	and	
^inancial	barriers	(Bhandari	et	al.,	2019).	

  Based	on	 the	 above	discussions,	we	predict	 that	 green	 technology	 transfer	will	 raise	
investments	 and	 use	 of	 sustainable	 technology,	 leading	 towards	 an	 increase	 in	 green	
growth.	Such	processes	will	lead	to	more	ef^icient	use	of	natural	resources	and	negative	
externalities	will	recede.	Thus,	the	second	testable	hypothesis	is	framed	as	follows:	

H2:	Green	technology	has	a	positive	impact	on	green	growth.		

2.3	Uncertainty	and	green	growth		
  Uncertainty	has	been	a	crucial	part	of	green	GDP	growth.	The	study	by	Liu	et	al.,	(2023)	
explored	the	impact	of	EPU	on	green	growth	by	using	a	sample	of	BRICS	countries	for	the	
period	1990	to	2020.	The	study	obtained	that	EPU	impedes	green	growth	in	the	BRICS	
countries.	The	study	by	Hallegatte	et	al.	(2012)	claim	that	Economic	Policy	Uncertainty	is	
a	major	driving	factor	for	green	growth.	The	study	argues	that	economic	policies	can	set	
right	 ef^iciency	 losses	 of	 economic	 operations	 owing	 to	 knowledge	 externalities,	
information	asymmetries	and	other	externalities.	A	series	of	policy	tools	such	as	price	
regulations	and	subsidies	are	required	to	boost	green	GDP.	However	the	study	concludes	
that	polices	alone	cannot	in^luence	green	growth.	

  At	the	backdrop	of	uncertainty		there	should	be	adequate	policies	to	foster	green	growth.	
According	to	the	study	by	Sonnenschein	and	Mundaca	(2016)	market	policies	enables	in	
adjusting	the	changes	in	the	price	system	of	production	factors	related	to	green	oriented	
industries.	 To	 counter	 economic	 policy	 uncertainty	 there	 should	 be	 adequate	
technological	 policies	 and	 tax	 credits	 that	 may	 assist	 green	 technologies	 to	 attain	
innovation	 turnover	 (Cecere	 and	 Corrocher,	 2016;	 Wang	 and	 Shao,	 2019).	 Policy	
uncertainty	will	spillover	into	the	macro	process	of	green	development.	The	study	by	Gu	
et	al.	 (2021)	 in	the	context	of	China	argues	that	the	 impact	of	EPU	on	green	growth	is	
multidimensional.	The	same	^indings	are	obtained	in	the	study	by	MA	et	al.,	(2022).	

		The	preceding	discussion	highlighted	the	importance	of	uncertainty	in	impacting	green	
growth.	Most	 of	 the	 earlier	 studies	 focused	on	EPU	as	 a	major	 factor	 to	 impact	 green	
growth.	The	current	research	proposes	that	along	with	EPU	based,	uncertainty	from	ESG	
risks	can	impede	green	growth.	Accordingly	the	third	testable	hypothesis	of	the	study	is	
proposed	as	follows	:	

H3:	Economic	Policy	Uncertainty	and	ESG	uncertainty	are	crucial	determinants	of	green	
growth.	

2.4		Scope	of	the	scholarship	
  Green	 economy	 has	 attracted	 the	 attention	 of	 governments,	 economists	 and	
environmentalists	 due	 to	 the	 acute	 threat	 on	 environmental	 problems	which	 includes	
climate	change,	global	food	insecurity	and	ecological	degradation	among	others.	Policy	
initiatives	and	governance	such	as	initiatives	by	the	United	Nations	and	Paris	agreement	
are	few	examples	that	are	aiming	to	drive	towards	green	growth.			Yet	studies	are	limited	
on	the	factors	affecting	green	growth.	Moreover	research	in	this	area	is	still	at	its	initial	
stages	with	a	large	number	of	studies	investigating	heterogeneous	issues	that	are	lumped	
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as	 green	 growth.	 There	 has	 been	 considerable	 efforts	 to	 de^ine	 the	 concept	 of	 green	
economy	however	there	is	an	urgent	need	to	provide	a	detailed	examination	of	the	factors	
that	drive	economies	to	implement	green	economy.	

  This	 research	has	 signi^icant	 implications	 for	both	 theory	and	practice	 in	 the	 ^ield	of	
sustainable	 economics.	 By	 elucidating	 the	 nonlinear	 impacts	 of	 EPU,	 ESG,	 green	
technology	 and	productive	 capacities	 on	 green	 growth	 and	 identifying	 the	 key	 factors	
affecting	 the	 relationship	 we	 contribute	 	 our	 advancement	 in	 sustainable	 economics.	
Moreover	 our	 results	 offer	 valuable	 insights	 to	 corporate	managers	 trying	 to	 develop	
effective	ESG	 strategies	 that	 are	 responsible	 for	 regional	 and	 industrial	 contexts.	 Such	
processes	enhance	the	capacity	to	navigate	the	challenges	posed	by	ESG.		

	
3.	Data	and	Empirical	Strategy	
3.1.	Data	and	variables	mapping	
  This	study	examines	the	structural	and	institutional	factors	influencing	green	growth	in	
18	OECD	countries	 from	2003	 to	2022.	To	support	 this	analysis,	we	compiled	a	panel	
dataset	 comprising	 environmental,	 innovation	 and	 policy-driven	 indicators	 extracted	
from	internationally	recognised	sources.	

		The	 OECD	 context	 is	 particularly	 relevant.	 These	 countries	 represent	 a	 relatively	
homogeneous	group	of	advanced	economies,	enabling	more	precise	comparisons	to	be	
made	 in	 terms	 of	 productive	 capacity,	 regulatory	maturity	 and	 policy	 engagement	 in	
sustainability-driven	 transitions.	 They	 were	 also	 among	 the	 first	 to	 adopt	 the	 ESG	
framework	 and	 proactive	 green	 innovation	 strategies,	 which	 underpinned	 their	
structural	change.	

  The	timeframe,	which	covers	the	period	from	2003	to	2022,	captures	the	critical	period	
during	which	climate	policy	moved	to	the	forefront	of	global	economic	discussions.	This	
period	includes	pivotal	policy	events	such	as	the	adoption	of	the	Kyoto	Protocol	in	the	
early	2000s,	the	aftermath	of	the	2008	financial	crisis,	the	Paris	Agreement	in	2015,	and	
green	recovery	ambitions	 following	the	2019–2020	pandemic.	These	events	provide	a	
rich	 context	 for	 assessing	 how	 structural	 and	 innovation-related	 factors	 have	 shaped	
environmentally	sustainable	economic	outcomes.	

		To	 operationalise	 this	 analysis,	 we	 adopt	 Green	 GDP	 as	 the	 focal	 variable.	 Unlike	
traditional	GDP,	which	only	captures	the	market-based	value	of	goods	and	services,	Green	
GDP	adjusts	for	environmental	costs	such	as	air	pollution,	waste	generation,	and	natural	
resource	 depletion.	 Developed	 by	 Skare	 et	 al.	 (2021),	 this	 measure	 integrates	
quantitative	 factors	 (e.g.	 energy	 use	 and	 pollution)	 and	 qualitative	 dimensions	 (e.g.	
opportunity	 costs),	 offering	 a	 more	 accurate	 measure	 of	 long-term	 economic	
sustainability	(Stjepanović	et	al.,	2022).	

		The	core	explanatory	variables	were	selected	to	reflect	key	domains	relevant	to	green	
transformation.	Specifically,	i)	Economic	Complexity	Index	(ECI	SITC):	obtained	from	the	
Atlas	 of	 Economic	 Complexity	 by	 the	Harvard	 Growth	 Lab,	 this	 variable	 captures	 the	
knowledge	intensity	and	structural	diversity	of	a	country’s	exports.	It	reflects	not	only	
the	number	of	products	that	a	country	exports,	but	also	the	ubiquity	or	rarity	of	those	
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products	in	other	economies.	Higher	ECI	values	indicate	that	a	country	exports	a	wide	
range	of	sophisticated	products	that	are	not	widely	available	elsewhere	and	require	in-
depth	 knowledge	 and	 organisational	 capabilities.	 From	 a	 sustainability	 perspective,	 a	
complex	 export	 structure	 is	 often	 associated	with	higher	 added	 value,	 lower	material	
intensity	 and	 cleaner	 production	 processes,	 making	 it	 a	 relevant	 indicator	 for	 green	
growth	 analysis;	 and	 ii)	Green	Technology	 Share	 (GT%):	 sourced	 from	 the	OECD	Data	
Explorer,	 this	 variable	 measures	 the	 proportion	 of	 green/environmentally	 related	
patents	 in	 total	patent	 activity.	 It	 reflects	 a	 country’s	 commitment	 to	and	capacity	 for	
developing	technological	solutions	to	environmental	challenges,	such	as	climate	change	
mitigation,	resource	efficiency,	pollution	control	and	clean	energy	generation.	High	GT%	
values	suggest	that	a	significant	proportion	of	national	R&D	efforts	are	directed	towards	
sustainability	 goals,	 indicating	 strategic	 alignment	 between	 innovation	 policy	 and	
environmental	objectives.	This	variable	 is	particularly	relevant	 in	 the	context	of	green	
growth,	 as	 the	 generation	 and	 diffusion	 of	 clean	 technologies	 are	 key	 enablers	 of	
decoupling	economic	performance	from	environmental	degradation	(Dechezleprêtre	et	
al.,	2008;	Cho	et	al.,	2018;	Shahbaz	et	al.,	2024).	Furthermore,	patent	data	offer	a	forward-
looking	perspective	on	technological	potential	as	patents	precede	market	adoption	and	
indicate	 sectors	 of	 potential	 future	 industrial	 transformation	 (Bergek	 et	 al.,	 2014;	
Verhoeven	et	al.,	2016).	

		In	addition	 to	 these	 core	variables,	we	 incorporate	a	broader	 set	of	 institutional	 and	
contextual	indicators. In	particular,	i)	Productive	Capacities	Index	(PCI)	developed	by	
the	UN	Trade	and	Development	(UNCTAD),	is	a	multidimensional	measure	that	captures	
countries'	capabilities	 to	produce	goods	and	services	 in	a	sustainable	and	competitive	
manner.	The	PCI	aggregates	performance	across	eight	core	dimensions:	human	capital,	
natural	 capital,	 energy,	 transport,	 information	 and	 communication	 technology	 (ICT),	
institutions,	private	sector	development	and	structural	change.	These	components	are	
derived	from	over	40	standardised	indicators	and	are	designed	to	reflect	the	quantity,	
quality,	and	depth	of	a	country’s	development	capacity.	By	 incorporating	 this	variable	
into	our	analysis,	we	can	gain	a	comprehensive	understanding	of	the	structural	readiness	
of	 OECD	 countries	 to	 implement	 and	 benefit	 from	 the	 green	 transformation	 of	 their	
economies;	 and	 ii)	Economic	Policy	Uncertainty	 Index	 (EPU)	 and	ESG	Uncertainty	
Index	 (ESGUI)	 both	 of	 which	 were	 developed	 by	 PolicyUncertainty.com,	 serve	 as	
measures	 of	 institutional	 volatility	 and	 regulatory	 ambiguity	 in	 economic	 and	
sustainability	 domains.	 The	 EPU	 captures	 fluctuations	 in	 uncertainty	 relating	 to	
macroeconomic	and	fiscal	policy	by	analysing	the	 frequency	of	policy-related	terms	in	
major	 newspapers,	 alongside	 data	 on	 tax	 code	 expiries	 and	 disagreements	 among	
economic	 forecasters.	 In	 contrast,	 the	 ESGUI	 focuses	 specifically	 on	 uncertainties	 in	
environmental,	 social	 and	 governance	 (ESG)	 policies.	 It	 quantifies	 the	 frequency	 and	
intensity	of	public	discourse	involving	terms	related	to	ESG	regulations,	green	finance,	
climate	 commitments	 and	 corporate	 sustainability	 reporting.	 ESG	 frameworks	 are	
becoming	 increasingly	 influential	 in	 shaping	 investment	 and	 corporate	 strategies,	
especially	within	the	OECD.	The	presence	of	volatile	or	unclear	ESG	signals	may	delay	the	
deployment	of	green	 technologies,	deter	 long-term	 investment	and	create	uncertainty	
around	compliance	costs	or	future	regulation	(Ilhan	et	al.,	2021;	Berg	et	al.,	2022).	In	the	
context	of	our	study,	both	indicators	are	particularly	relevant.	High	levels	of	economic	
policy	uncertainty	can	reduce	firms’	willingness	to	invest	in	long-term,	capital-intensive	
green	innovations.	Likewise,	uncertainty	surrounding	ESG	can	impede	the	transition	to	
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more	 sustainable	 business	 models	 by	 undermining	 the	 clarity	 and	 credibility	 of	
environmental	commitments.	

		This	extended	variable	framework	enables	us	to	explore	not	only	the	technological	and	
productive	drivers	of	sustainable	growth	but	also	the	institutional	and	global	dynamics	
that	 shape	 long-term	 green	 economic	 performance.	 Table	 1	 presents	 list	 of	 variables,	
abbreviations	and	the	data	sources	 for	each	of	 these	variables	discussed	 in	 this	study,	
ensuring	transparency	and	facilitating	the	reproducibility	of	our	analytical	framework.	
	

Table 1: Data overview 

Data	Description	 Abbreviation	 Source	/	Institution	
Green	GDP	 GG	 Mendeley	Data		

Skare,	M.,	Tomic,	D.,	&	Stjepanovic,	S.	(2021)*	
Productive	Capacities	Index	 PCI	 UNCTAD	
Economic	Complexity	Index	
(SITC)	

ECI		 Harvard	Growth	Lab	(Atlas	of	Economic	
Complexity)	

Economic	Policy	Uncertainty	
Index	

EPU	 PolicyUncertainty.com	

ESG	Uncertainty	Index	 ESG	 PolicyUncertainty.com	
Green	Technology	Share	(%)	 GT	 OECD	
Energy	consumption	 EnC	 Our	world	in	data	

 
3.2	Quantile-on-Quantile	regression	(QQR)	by	Sim	and	Zhou	(2015)	
		To	 capture	 the	heterogeneous	 and	 state-dependent	dynamics	between	green	growth	
and	 its	structural,	 technological,	and	uncertainty-related	determinants,	we	employ	the	
Quantile-on-Quantile	 Regression	 (QQR)	 approach	 proposed	 by	 Sim	 and	 Zhou	 (2015).	
Unlike	traditional	quantile	regression,	which	estimates	the	conditional	quantiles	of	the	
dependent	variable	as	a	function	of	the	mean	of	explanatory	variables,	the	QQR	method	
examines	 how	 specific	 quantiles	 of	 an	 independent	 variable	 influence	 corresponding	
quantiles	of	the	dependent	variable.	This	dual	quantile	structure	allows	a	more	nuanced	
assessment	 of	 non-linear	 and	 asymmetric	 dependence	 across	 the	 entire	 conditional	
distribution.	In	our	context,	the	QQR	framework	reveals	whether,	for	instance,	high	levels	
of	economic	complexity	or	green	technology	exert	a	different	 impact	on	green	growth	
when	economies	are	in	strong	versus	weak	performance	states.	
		Formally,	let	𝐺!	denote	the	growth-adjusted	green	output	(∆GG)	and	Xt	represents	the	
respective	 explanatory	 variable	 (PCI,	 ECI,	 EPU,	 ESG,	GT,	 or	∆ENC).	 Following	 Sim	and	
Zhou	(2015),	the	relationship	between	the	𝜏-th	quantile	of	𝐺!	and	the	𝜃-th	quantile	of	Xt	
can	be	expressed	as:	

𝐺! = 𝛼(𝜃, 𝜏) + 𝛽(𝜃, 𝜏)(Xt − X#) + 𝜀!(𝜃, 𝜏)																																				(1)	

where	𝛼 	is	 the	 quantile-specific	 intercept,𝛽(𝜃, 𝜏) 	captures	 the	 elasticity	 of	 the	 𝜏 -th	
quantile	 of	𝐺! 	with	 respect	 to	 the	𝜃 -th	 quantile	 of	Xt ,	X# 	is	 the	𝜃 -th	 quantile	 of	 the	
independent	variable	estimated	via	 the	Gaussian	kernel,	 and	𝜀! 	is	 the	quantile-specific	
residual.	By	estimating	𝛽(𝜃, 𝜏)	over	the	grid	of	quantiles	𝜃, 𝜏 ∈ (0.1,0.9),	the	QQR	model	
generates	a	three-dimensional	surface	describing	how	the	 impact	of	each	determinant	
varies	across	both	the	distribution	of	green	growth	and	its	drivers.	

3.3	Cross-Quantilogram	by	Han	et	al.	(2016)	
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		To	further	examine	the	dynamic	dependence	structure	between	green	growth	and	its	
determinants	across	the	conditional	distribution,	we	employ	the	cross-quantilogram	(CQ)	
approach	proposed	by	Han	et	al.	(2016).	Unlike	standard	correlation	or	Granger	causality	
tests	 that	 focus	 on	 mean	 relationships,	 the	 CQ	 framework	 evaluates	 quantile-based	
dependence	between	two	time	series	at	different	quantile	combinations	and	time	lags.	
This	 technique	 captures	 tail	 dependence	 and	directional	 predictability,	 allowing	us	 to	
identify	whether	extreme	events	(e.g.,	high	uncertainty,	low	productivity) in	one	variable	
systematically	precede	or	follow	specific	outcomes	in	green	growth.	
		Formally,	the	cross-quantilogram	between	𝐺!	and	an	explanatory	variable	𝑋!	is	defined	
as:	

𝜌$,#(𝑘) =
&[(!)*"+,#($)/($)0"%&+,'(#)/]

2&[(!((*"+,#($))]2&[($
()0"%&+,'(#)/]

																																							(2)	

where	𝑞*(𝜏) 	and	𝑞0(𝜃) 	denote	 the	𝜏 -th	 and	𝜃 -th	 conditional	 quantiles	 of	𝐺! 	and	𝑋! ,	
respectively;	𝜓$(𝑢) = 1[𝑢 < 0] − 𝜏	is	the	quantile	hit	process	that	measures	whether	the	
observation	lies	below	the	corresponding	quantile;	and	𝑘	represents	the	lag	order.	The	
statistic	𝜌$,#(𝑘)	thus	measures	the	directional	dependence	between	the	𝜃-th	quantile	of	
𝑋!+3 	and	𝜏-th	quantile	of	𝐺!	at	lag	𝑘.	

		This	method	offers	several	advantages	in	our	context	of	green	growth	analysis.	First,	it	
captures	 nonlinear	 and	 asymmetric	 interactions	 that	 cannot	 be	 detected	 through	
conventional	linear	models.	Second,	it	accounts	for	the	persistence	and	lead–lag	structure	
of	dependence,	revealing	whether	fluctuations	in	uncertainty,	technology,	or	productive	
capacity	precede	or	lag	changes	in	green	growth	across	different	states	of	the	distribution.	
Finally,	 the	 CQ	 framework	 provides	 a	 quantile-specific	 dependence	 map,	 enabling	
visualization	of	how	lower-	or	upper-tail	shocks	in	each	determinant	affect	the	dynamics	
of	green	growth	over	time.		

3.4	Cross-in-quantile	by	Balcilar,	Gupta	and	Pierdzioch	(2016)	
		To	complement	the	quantile-on-quantile	and	cross-quantilogram	analyses,	we	adopt	the	
causality-in-quantile	 (CiQ)	 framework	 developed	 by	 Balcilar,	 Gupta,	 and	 Pierdzioch	
(2016).	 This	 method	 evaluates	 whether	 an	 explanatory	 variable	𝑋! 	Granger-causes	
growth-adjusted	 green	 output	𝐺! 	at	 different	 points	 of	 their	 conditional	 distributions,	
rather	than	only	at	 the	mean.	Traditional	Granger	causality	 tests	assume	linearity	and	
distributional	 homogeneity,	 which	may	 overlook	 causal	 relationships	 that	 occur	 only	
during	extreme	episodes—such	as	periods	of	severe	uncertainty,	technological	surges,	or	
energy-related	 shocks.	 The	 CiQ	 approach	 relaxes	 these	 assumptions	 and	 allows	 for	
nonlinear,	tail-specific,	and	regime-dependent	causal	effects.	
		Formally,	the	CiQ	test	examines	whether	the	conditional	quantile	function	of	𝐺!45	differs	
when	 conditioning	 on	 the	 history	 of	𝑋! .	 Let	𝑄*")*(𝜏|ℱ!) 	denote	 the	𝜏 -th	 conditional	
quantile	of	green	growth	given	 information	set	ℱ! .	The	null	hypothesis	of	no	quantile-
specific	causality	is:	

H0: 𝑄*")*(𝜏|𝐺! , 𝑋!) = 𝑄*")*(𝜏|𝐺!)							for	all	𝜏 ∈ (0,1)	

		Under	the	alternative,	past	values	of	𝑋!	shift	the	𝜏-th	quantile	of	𝐺!45,	implying	causality.	
Balcilar	et	al.	(2016)	propose	a	test	statistic	built	from	the	empirical	quantile	regression	
process,	allowing	inference	without	imposing	parametric	restrictions	on	the	relationship	
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between	𝑋!	and	𝐺! .	This	provides	a	flexible	tool	capable	of	detecting	causal	effects	that	
are	nonlinear	in	magnitude	and	asymmetric	across	quantiles.	
		Applying	 this	method	 to	 the	 six	 determinants—PCI,	 ECI,	 EPU,	 ESG,	 GT,	 and	∆ENC—
enables	assessment	of	whether	each	variable	exerts	predictive	power	on	green	growth	
during	low-growth	states	(𝜏 =0.1-0.3),	normal	conditions	(𝜏 =0.4-0.6),	and	high-growth	
states	(𝜏 =0.7-0.9).	Importantly,	the	CiQ	approach	does	not	assume	that	causal	effects	are	
homogeneous:	 an	 explanatory	 variable	 may	 lack	 predictive	 power	 during	 tranquil	
periods	but	exercise	strong	influence	during	boom	or	stress	regimes.	
		To	operationalize	the	test,	quantile	regression	residuals	are	used	to	construct	the	CiQ	
statistic	across	quantiles	0.1-0.9.	These	are	then	compared	with	stimulated	5%	and	10%	
critical	 values,	 allowing	 identification	 of	 regime-specific	 rejection	 regions	 for	 the	 null	
hypothesis	of	no	causality.				

3.5	Wavelet-quantile	regression	by	Adebayo	and	Özkan	(2024)	
		Following	Adebayo	and	Özkan	(2024),	a	traditional	quantile	regression	(QR)	model	for	
two	time	series	can	be	written	as,		

𝑄$(𝑌 ∣ 𝑋) = 𝛽7(𝜏) + 𝛽5(𝜏)𝑋	
where	𝑄$(𝑌 ∣ 𝑋)is	the	conditional	quantile	of	the	response	variable	𝑌at	quantile	level	𝜏,	
given	the	 factor	variable	𝑋.	The	parameters	𝛽7(𝜏)and	𝛽5(𝜏)represent	 the	 intercept	and	
slope	at	that	specific	quantile.	
		Quantile	regression,	introduced	by	Koenker	and	Bassett	(1978),	expands	the	scope	of	
classical	 linear	 regression	 by	 focusing	 on	 conditional	 quantiles	 rather	 than	 the	
conditional	mean.	Unlike	ordinary	least	squares,	which	only	describes	how	the	average	
of	 the	 dependent	 variable	 responds	 to	 changes	 in	 an	 explanatory	 variable,	 QR	 allows	
researchers	 to	 study	 how	 different	 points	 of	 the	 distribution	 behave.	 This	 feature	 is	
especially	 useful	 when	 the	 relationship	 between	 variables	 is	 not	 uniform	 across	 the	
distribution.	QR	is	also	less	sensitive	to	outliers	and	can	accommodate	heteroskedasticity,	
making	it	a	practical	tool	in	many	empirical	settings.	Through	this	approach,	researchers	
gain	a	clearer	view	of	heterogeneous	effects	that	may	be	hidden	when	relying	solely	on	
mean-based	methods	 (Chernozhukov	 et	 al.,	 2013;	Koenker,	 2005;	Machado	 and	 Silva,	
2005).	
		However,	 the	 traditional	QR	 framework	 does	 not	 distinguish	 between	 different	 time	
horizons.	 It	 implicitly	 treats	 short-term	 and	 long-term	 variations	 as	 identical,	 even	
though	prior	studies	highlight	that	this	assumption	may	not	hold	(Irfan	et	al.,	2022;	Liu	
et	al.,	2023;	Olanipekun	et	al.,	2023;	Umar	et	al.,	2020).	
		To	address	this	gap,	we	employ	the	Wavelet	Quantile	Regression	developed	by	Adebayo	
and	Özkan	(2024)	which	evaluates	how	the	effect	of	a	factor	variable	𝑋	on	the	conditional	
quantiles	of	𝑌	evolves	across	different	time	scales.	The	method	proceeds	in	two	stages.	
		First,	 we	 decompose	 the	 time	 series	𝑌! 	and	𝑋! 	using	 the	 maximal	 overlap	 discrete	
wavelet	transform	(MODWT)	of	Percival	and	Walden	(2000),	following	the	steps	outlined	
in	Kumar	and	Padakandla	(2022).	Let	𝑋[𝑖]	be	a	signal	of	length	𝑇 = 28.	Using	the	low-pass	
and	high-pass	 filters	ℎ5[𝑖]and	𝑔5[𝑖],	we	obtain	 the	 first-level	 approximation	and	detail	
coefficients	through	convolution,	

𝛼5[𝑖] = ∑ ℎ5[𝑖 − 𝑘]𝑋[𝑘]3 ,	
𝑑5[𝑖] = ∑ 𝑔5[𝑖 − 𝑘]𝑋[𝑘]3 .	
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		We	then	apply	the	same	filtering	procedure	to	the	approximation	coefficients.	We	have	
the	followings,	

𝛼945[𝑖] = ∑ ℎ945[𝑖 − 𝑘]𝑋[𝑖]3 ,	
𝑑945[i]=	∑ 𝑔945[𝑛 − 𝑘]𝑋[𝑗]3 .	

		Repeating	this	process	for	𝐽	levels	produces	a	set	of	detail	coefficients	for	both	variables,	
each	representing	fluctuations	at	a	specific	time	scale.	
		In	the	second	stage,	we	run	quantile	regressions	using	the	wavelet	detail	coefficients	of	
𝑌and	𝑋	at	each	scale.	The	WQR	model	for	quantile	level	𝜏	and	decomposition	level	𝑗	is:	

𝑄$(𝑑9[𝑌] ∣ 𝑑9[𝑋]) = 𝛽7(𝜏) + 𝛽5(𝜏)𝑑9[𝑋].	
	
3.6	Wavelet-quantile	correlation	by	Kumar	and	Padakondlas	(2022)	
		Following	Kumar	and	Padakondlas	(2022),	we	decompose	the	return	series	and	𝑌!using	
the	maximal	overlapping	discrete	wavelet	transform	(MODWT)	of	Percival	and	Walden	
(2000).	 Consider	 a	 signal	𝑋[𝑖]of	 length	𝑇 = 28 .	 Let	ℎ5[𝑖]and	𝑔5[𝑖]be	 the	 low-pass	 and	
high-pass	 filters	associated	with	an	orthogonal	wavelet.	Convolution	of	𝑋[𝑖]with	 these	
filters	yields	the	approximation	coefficients	𝑎5[𝑖]and	the	detail	coefficients	𝑑5[𝑖],	

𝑎5[𝑖] =Oℎ5[𝑖 − 𝑘]𝑠[𝑘]
3

	

𝑑5[𝑖] =O𝑔5[𝑖 − 𝑘]𝑠[𝑘]
3

	

		The	approximation	coefficients	𝑎5[𝑖]are	then	passed	through	upsampled	versions	of	the	
original	 filters,	 denoted	ℎ:[𝑖]and	𝑔:[𝑖] ,	 where	 the	 up-sampling	 operator	𝑈(⋅)inserts	 a	
zero	between	each	adjacent	element	of	the	filter.	Repeating	this	procedure	produces	the	
multi-level	decomposition.	For	𝑗 = 1,2, … , 𝐽7 − 1,	with	𝐽7 ≤ 𝐽,	

𝑎945[𝑖] =Oℎ945[𝑖 − 𝑘]𝑎9[𝑘]
3

	

𝑑5[𝑖] =Oℎ945[𝑛 − 𝑘]𝑎9[𝑗]
3

	

where	 ℎ945[𝑖] = 𝑈(ℎ9[𝑖]) and	 𝑔945[𝑖] = 𝑈(𝑔9[𝑖]) .	 After	 completing	 the	 𝐽 -level	
decomposition	 for	 both	𝑋!and	𝑌! ,	 we	 apply	 quantile	 correlation	 to	 each	 pair	 of	 detail	
coefficients	 U𝑑9[𝑋], 𝑑9[𝑌]V .	 This	 produces	 a	 scale-specific	 dependence	 measure,	 the	
Wavelet	Quantile	Correlation,	defined	for	quantile	𝜏	at	scale	𝑗	as,	

𝑊𝑄𝐶$U𝑑9[𝑋], 𝑑9[𝑌]V =
𝑞𝑐𝑜𝑣$(𝑑9[𝑌], 𝑑9[𝑋])

\𝑣𝑎𝑟 ^ϕ$ `𝑑9[𝑌] − 𝑄$,;+[<]ab 𝑣𝑎𝑟(𝑑9[𝑋])
		

𝑞𝑐𝑜𝑣$U𝑑9[𝑌], 𝑑9[𝑋]V = 𝑐𝑜𝑣 c𝐼 `𝑑9[𝑌] − 𝑄$,;+[<] > 0a , 𝑥g	
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4.	Main	Results	
  The	 summary	 statistics	 are	 presented	 in	 Table	 2.	 The	 table	 indicates	 substantial	
dispersion	in	growth-adjusted	green	output	(∆GG).	Specifically,	 the	median	is	positive,	
but	the	interquartile	range	is	negative	and	the	overall	range	is	wide,	suggesting	volatility	
with	 occasional	 extremes.	 The	 structural	 variables:	 productive	 capacity	 (PCI)	 and	
economic	 complexity	 (ECI)	 exhibit	 moderate	 spread,	 reflecting	 relatively	 stable	
structural	fundamentals	across	economies.	In	contrast,	the	green-technology	share	(GT)	
varies	 meaningfully	 across	 country-years,	 indicating	 cross-country	 differences	 in	 the	
adoption	 of	 clean	 innovation.	 The	 two	 policy-uncertainty	 measures	 (EPU	 and	 ESG	
uncertainty)	are	right-skewed	and	heavy-tailed,	consistent	with	episodic	spikes	during	
periods	of	geopolitical	or	financial	stress.	Finally,	Energy	consumption	changes	(∆ENC)	
show	the	largest	variability,	underscoring	the	critical	role	of	energy	dynamics	in	shaping	
the	green	growth	trajectory.		

Table	2:	Summary	statistics	

	 ∆GG	(in	billions)	 	 PCI	 ECI	 EPU	 ESG	 GT	 ∆ENC	
Mean	 53.1	 	 60.99	 2.15	 132.82	 29.46	 29.79	 -3.90	
Std.	Dev	 265	 	 6.63	 0.88	 80.33	 8.43	 10.83	 199.09	
Min	 -2700	 	 39.5	 0.33	 27	 7.41886	 10.37	 -1955.85	
25%	 -17	 	 57.2	 1.47	 80.77	 23.94	 22.41	 -32.18	
50%	 33.1	 	 62.3	 2.36	 111.63	 29.31	 27.73	 5.53	
75%	 106	 	 66.5	 2.78	 155.60	 33.96	 34.96	 34.38	
Max	 1090	 	 71.1	 3.87	 669.01	 59.28	 79.55	 1334.18	
Jarque-Bera	 264.74*	 	 39.78*	 19.19*	 1429.36*	 23.57*	 194.46*	 255.42*	
Obs.	 341	 	 359	 359	 359	 359	 359	 341	

Note:	*,	**,	***	denote	10%,	5%,	1%	levels.	
 
  The	 correlation	 heatmap	 in	 Figure	 1	 illustrates	 the	 pairwise	 associations	 among	 the	
main	 variables.	 In	 particular,	∆GG	 comoves	 positively	with	 PCI,	 ECI,	 and	 GT	which	 is	
consistent	with	greener	growth	in	economies	with	stronger	productive	structures,	more	
complex	export	baskets,	and	greener	innovation	portfolios.	Conversely,	∆GG	is	negatively	
associated	with	EPU	and	ESG	uncertainty,	reflecting	the	drag	from	uncertainty	on	long-
horizon	green	investment.	Changes	in	energy	consumption	(∆ENC)	also	exhibit	a	weak	
but	discernible	link	to	∆GG,	reflecting	the	energy	intensity	of	growth	adjustments.	Overall,	
the	 correlations	 are	moderate	 in	magnitude,	 supporting	 the	 need	 for	more	 advanced	
econometric	methods	to	capture	heterogeneous	effects	beyond	linear	associations.	

		Table	3	reports	 results	 from	the	panel	quantile	unit	 root	 tests	across	 the	conditional	
distribution	(0.1-0.9	quantiles).	The	test	statistics	consistently	reject	the	unit	root	null	for	
all	variables	at	conventional	significant	levels,	confirming	their	stationarity	throughout	
the	 distribution.	 This	 robustness	 across	 quantiles	 strengthens	 confidence	 in	 our	
empirical	 framework,	as	 it	 indicates	that	the	variables’	statistical	properties	are	stable	
not	 only	 on	 average	 but	 also	 at	 different	 points	 of	 the	 conditional	 distribution.	More	
specifically,	the	rejection	of	unit	roots	for	∆GG,	PCI,	ECI,	GT,	EPU,	ESG,	and	∆ENC	ensures	
the	validity	of	subsequent	panel	estimations	without	the	risk	of	spurious	regressions.	
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Figure	1:	Correlation	matrix	heatmap	

 
 
  	
		Figure	 2	 presents	 Sim	 and	 Zhou	 (2015)	 results.	 The	 PCI	 panel	 shows	 a	 clear	 state-
dependent	pattern.	Specifically,	at	low	PCI	quantiles,	coefficients	are	negative	across	most	
of	 the	∆GG	 distribution,	 indicating	 that	 weak	 productive	 structures	 constrain	 green	
growth.	As	PCI	rises,	the	coefficients	turn	positive,	particularly	at	higher	∆GG	quantiles,	
suggesting	that	strong	productive	capacity	amplifies	gains	when	economies	are	already	
on	 a	 greener	 trajectory.	 This	 asymmetry	 highlights	 a	 threshold	 effect,	 where	 only	
sufficiently	high	levels	of	productive	capacity	generate	sustained	improvements	in	green	
output,	underscoring	the	importance	of	structural	capacity	building	for	long-term	green	
growth.	

 
		The	ECI	panel	 indicates	 that	 low	 levels	of	ECI	have	 little	or	 even	negative	 impact	on	
growth-adjusted	 green	 output	 ( ∆ GG),	 reflecting	 limited	 green	 benefits	 in	 less	
sophisticated	 economies.	 As	 ECI	 rises,	 the	 coefficients	 turn	 positive	 and	 strengthen,	
particularly	 at	 higher	 ΔGG	 quantiles,	 suggesting	 that	 complex	 production	 and	 export	
structures	amplify	green	growth	when	economies	are	already	on	a	stronger	trajectory.	
This	asymmetric	pattern	highlights	that	advancing	economic	complexity	is	a	key	driver	
of	sustained	green	growth,	especially	in	high-performing	states.	
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Table	3:	Panel	quantile	unit	root	test	(ADF	test)	
Quantile	 Variable	 t-statistic	 p-value	 Quantile	 Variable	 t-statistic	 p-value	
Quantile	0.1	 ΔGG	 -12.6128	 0.0000	 Quantile	0.1	 ECI	 -3.193	 0.0204	
Quantile	0.2	 ΔGG	 -12.6128	 0.0000	 Quantile	0.2	 ECI	 -3.193	 0.0204	
Quantile	0.3	 ΔGG	 -12.6128	 0.0000	 Quantile	0.3	 ECI	 -3.193	 0.0204	
Quantile	0.4	 ΔGG	 -12.6128	 0.0000	 Quantile	0.4	 ECI	 -3.193	 0.0204	
Quantile	0.5	 ΔGG	 -12.6128	 0.0000	 Quantile	0.5	 ECI	 -3.193	 0.0204	
Quantile	0.6	 ΔGG	 -12.6128	 0.0000	 Quantile	0.6	 ECI	 -3.193	 0.0204	
Quantile	0.7	 ΔGG	 -12.6128	 0.0000	 Quantile	0.7	 ECI	 -3.193	 0.0204	
Quantile	0.8	 ΔGG	 -12.6128	 0.0000	 Quantile	0.8	 ECI	 -3.193	 0.0204	
Quantile	0.9	 ΔGG	 -12.6128	 0.0000	 Quantile	0.9	 ECI	 -3.193	 0.0204	
Quantile	0.1	 EPU	 -6.5855	 0.0000	 Quantile	0.1	 ESG	 -9.0551	 0.0000	
Quantile	0.2	 EPU	 -6.5855	 0.0000	 Quantile	0.2	 ESG	 -9.0551	 0.0000	
Quantile	0.3	 EPU	 -6.5855	 0.0000	 Quantile	0.3	 ESG	 -9.0551	 0.0000	
Quantile	0.4	 EPU	 -6.5855	 0.0000	 Quantile	0.4	 ESG	 -9.0551	 0.0000	
Quantile	0.5	 EPU	 -6.5855	 0.0000	 Quantile	0.5	 ESG	 -9.0551	 0.0000	
Quantile	0.6	 EPU	 -6.5855	 0.0000	 Quantile	0.6	 ESG	 -9.0551	 0.0000	
Quantile	0.7	 EPU	 -6.5855	 0.0000	 Quantile	0.7	 ESG	 -9.0551	 0.0000	
Quantile	0.8	 EPU	 -6.5855	 0.0000	 Quantile	0.8	 ESG	 -9.0551	 0.0000	
Quantile	0.9	 EPU	 -6.5855	 0.0000	 Quantile	0.9	 ESG	 -9.0551	 0.0000	
Quantile	0.1	 GT	 -5.9717	 0.0000	 Quantile	0.1	 PCI	 -3.2912	 0.0153	
Quantile	0.2	 GT	 -5.9717	 0.0000	 Quantile	0.2	 PCI	 -3.2912	 0.0153	
Quantile	0.3	 GT	 -5.9717	 0.0000	 Quantile	0.3	 PCI	 -3.2912	 0.0153	
Quantile	0.4	 GT	 -5.9717	 0.0000	 Quantile	0.4	 PCI	 -3.2912	 0.0153	
Quantile	0.5	 GT	 -5.9717	 0.0000	 Quantile	0.5	 PCI	 -3.2912	 0.0153	
Quantile	0.6	 GT	 -5.9717	 0.0000	 Quantile	0.6	 PCI	 -3.2912	 0.0153	
Quantile	0.7	 GT	 -5.9717	 0.0000	 Quantile	0.7	 PCI	 -3.2912	 0.0153	
Quantile	0.8	 GT	 -5.9717	 0.0000	 Quantile	0.8	 PCI	 -3.2912	 0.0153	
Quantile	0.9	 GT	 -5.9717	 0.0000	 Quantile	0.9	 PCI	 -3.2912	 0.0153	
Quantile	0.1	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.2	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.3	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.4	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.5	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.6	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.7	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.8	 ΔENC	 -22.8499	 0.0000	 	 	 	 	
Quantile	0.9	 ΔENC	 -22.8499	 0.0000	 	 	 	 	

 
  		The	surface	of	EPU	panel	exhibits	a	clear	downward	slope	along	the	EPU	dimension,	
indicating	that	higher	levels	of	uncertainty	consistently	depress	green	growth	outcomes.	
At	low	EPU	quantiles,	the	coefficients	are	positive	across	most	∆GG	quantiles,	suggesting	
that	policy	stability	supports	green	expansion.	However,	as	EPU	rises,	the	relationship	
turns	negative	throughout	the	distribution,	with	the	strongest	adverse	effects	observed	
in	both	 the	 lower	 and	upper	 tails	 of	∆GG.	These	 results	highlight	 the	 state-dependent	
nature	of	uncertainty	shocks,	with	both	constrain	recovery	in	weak	green-growth	states	
and	erode	momentum	in	stronger	ones,	underscoring	the	importance	of	a	stable	policy	
environment	for	sustaining	long-horizon	green	investment.	
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Figure	2:	Sim	and	Zhou	(2015)	quantile-on-quantile	results	

 
	
		The	 surface	 of	 ESG	 panel	 reveals	 a	 clear	 negative	 slope	 along	 the	 ESG	 dimension,	
showing	that	higher	levels	of	uncertainty	systematically	weaken	growth-adjusted	green	
output	 (∆GG).	At	 low	quantiles	of	ESG	uncertainty,	 coefficients	 remain	positive	across	
most	∆GG	quantiles,	indicating	that	stability	in	sustainability	frameworks	supports	green	
growth.	 However,	 as	 uncertainty	 increases,	 the	 relationship	 turns	markedly	 negative	
across	 the	distribution,	with	particularly	 strong	adverse	effects	 in	both	 the	 lower	and	
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upper	 tails	 of	 ∆ GG.	 These	 results	 highlight	 that	 ESG-related	 uncertainty	 not	 only	
constrains	recovery	in	weak	green-growth	states	but	also	erodes	momentum	in	stronger	
ones,	emphasizing	the	importance	of	credible	and	stable	ESG	framework	for	sustaining	
long-term	green	investment.	
		The	results	of	the	green	technology	share	(GT)	show	that	low	levels	of	GT	provide	limited	
benefits	 for	growth-adjusted	green	output	 (∆GG),	but	as	GT	rises	 the	coefficients	 turn	
strongly	positive	across	the	distribution.	The	strongest	effects	occur	when	both	GT	and	
∆GG	are	high,	indicating	that	deeper	penetration	of	green	technologies	amplifies	existing	
green	growth	momentum	through	spillovers	and	scale	effects.	This	highlights	the	pivotal	
role	 of	 sustained	 green	 innovation	 in	 driving	 and	 reinforcing	 long-term	 sustainable	
growth.		
		The	results	of	changes	in	energy	consumption	panel	(ΔENC)	reveal	a	nonlinear	pattern.	
Specifically,	 at	 low	ΔENC	 quantiles,	 coefficients	 are	 flat	 and	 negligible,	 indicating	 that	
modest	 shifts	 in	 energy	 use	 do	 not	meaningfully	 affect	 growth-adjusted	 green	 output	
(ΔGG).	By	contrast,	at	higher	ΔENC	quantiles	the	coefficients	rise	sharply,	particularly	for	
economies	 in	 stronger	 green-growth	 states,	 suggesting	 that	 large	 increases	 in	 energy	
demand	 are	 associated	with	 amplified	 growth	 outcomes.	 This	 threshold-driven	 effect	
underscores	the	critical	importance	of	directing	energy	expansions	toward	clean	sources	
to	ensure	that	rising	demand	supports	rather	than	undermines	long-term	green	growth.	
		Figure	3	reports	Han	et	al.	(2016)	cross-quantilogram	results.	For	PCI	and	ECI	across	
different	lags,	the	patterns	show	that	PCI	exhibits	weak	or	negative	short-run	dependence	
with	growth-adjusted	green	output	(ΔGG),	with	positive	effects	emerging	only	at	longer	
horizons	 and	 in	 higher	 quantiles,	 indicating	 a	 delayed	 and	 state-dependent	 role.	 By	
contrast,	 ECI	displays	 strong	 and	persistent	positive	dependence	 across	mid-to-upper	
quantiles	 at	 all	 lags,	 suggesting	 that	 greater	 economic	 complexity	 reinforces	 green	
growth	more	immediately	and	consistently.	These	results	highlight	that	while	productive	
capacity	contributes	gradually,	economic	complexity	provides	a	more	robust	and	timely	
driver	of	sustained	growth. 
		In	terms	of	the	cross-quantilogram	estimates	for	EPU	and	ESG	uncertainty,	the	results	
show	that	EPU	exerts	strong	negative	dependence	on	growth-adjusted	green	output	(ΔGG)	
in	 the	 short	 run,	 particularly	 at	 lower	 quantiles,	 but	 its	 effects	 dissipate	 quickly	 over	
longer	lags.	In	contrast,	ESG-related	displays	more	persistent	and	widespread	negative	
dependence	 across	 quantiles	 and	 horizons,	 constraining	 recovery	 in	weak	 states	 and	
curbing	 momentum	 in	 strong	 ones.	 This	 asymmetry	 highlights	 that	 while	 policy	
uncertainty	delivers	sharp	but	short-lived	shocks,	ESG	uncertainty	has	a	more	durable	
dampening	effect,	underscoring	the	importance	of	stable	sustainability	frameworks	for	
long-term	green	growth.		 		
		Regarding	to	the	cross-quantilogram	estimates	for	GT	and	ΔENC,	our	results	show	that	
GT	 exhibits	 persistent	 positive	 dependence	 with	 ΔGG,	 particularly	 at	 mid-to-upper	
quantiles	 and	across	 short-to-medium	 lags,	 indicating	 that	 green	 technology	 adoption	
quickly	 reinforces	 and	 sustains	 green	 growth.	 By	 contrast,	 ΔENC	 displays	 a	 more	
heterogeneous	 pattern.	 In	 particular,	 short-run	 increases	 in	 energy	 use	 are	 positively	
associated	with	ΔGG,	especially	in	stronger	states,	but	these	effects	weaken	and	even	turn	
negative	 at	 longer	 horizons.	 This	 contrasts	 highlights	 that	 while	 green	 innovation	
provides	a	durable	engine	 for	sustainable	growth,	energy-driven	expansions	are	more	
conditional	and	transient.	
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Figure	3:	Cross-quantilogram	heatmap	results	for	lags	1,	2,	4	
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Figure	3:	Continued	
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Figure	3:	Continued	

	
	
		Overall,	our	cross-quantilogram	evidence	underscores	 that	structural	drivers	such	as	
complexity	and	green	innovation	exert	durable	positive	effects,	whereas	uncertainty	acts	
as	 a	 significant	 drag,	 and	 energy	 consumption	dynamics	 yield	 conditional,	 short-lived	
gains.	
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Table	4:	Balcilar	et	al.	(2016)	causality-in-quantile	results		
Quantile	 PCI	 ECI	 EPU	 ESG	 GT	 ΔENC	
0.1	 -2100***	 -63000***	 -960***	 -4400***	 -4600***	 585***	
0.2	 -640***	 -21000***	 -310***	 -1200***	 -1100***	 571***	
0.3	 -53	 -560	 -82*	 -120	 15.69	 571***	
0.4	 281***	 9890***	 53.69	 523***	 450**	 571***	
0.5	 551***	 18700	***	 159***	 1090***	 816	***	 571***	
0.6	 889***	 29000***	 270***	 1620***	 1460***	 571***	
0.7	 1500***	 41500***	 451***	 2530***	 2400***	 571***	
0.8	 2130***	 71900	***	 808***	 4230***	 4190***	 571***	
0.9	 4570***	 131000***	 1620***	 9240***	 8490***	 571***	
Note:	 All	 values	 are	 reported	 in	 units	 of	 millions.	 Asterisks	 denote	 statistical	 significance	 at	
conventional	levels:	***p	<	0.01,	**p	<	0.05,	*p	<	0.1.	
	
		Table	4	reports	the	causality-in-quantile	test	results	of	Balcilar	et	al.	(2016),	showing	
how	the	determinants	of	ΔGG	vary	across	the	conditional	distribution.	The	findings	reveal	
substantial	 heterogeneity	 and	 asymmetry.	 Productive	 capacity	 (PCI)	 exerts	 negative	
effects	 at	 lower	 quantiles,	 indicating	 that	weak	productive	 structures	 constrain	 green	
growth	in	fragile	states,	but	becomes	strongly	positive	at	higher	quantiles,	suggesting	a	
threshold	 effect	 where	 capacity	 building	 reinforces	 greener	 trajectories.	 Economic	
complexity	 (ECI)	 with	 coefficients	 rising	 sharply	 toward	 the	 upper	 quantiles,	
underscoring	 the	 robust	 role	 of	 structural	 sophistication	 in	 supporting	 sustainable	
growth.	 By	 contrast,	 economic	 policy	 uncertainty	 (EPU)	 and	 ESG-related	 uncertainty	
(ESG)	are	predominantly	negative	at	the	lower	quantiles,	highlighting	their	destabilizing	
role	in	weak	states.	Green	technology	(GT)	also	displays	threshold	dynamics.	In	particular,	
initially	 negative	 at	 lower	 quantiles,	 but	 turning	 strongly	 positive	 from	 the	 median	
upwards,	with	the	largest	effects	in	the	upper	tail,	reflecting	the	amplifying	role	of	clean	
innovation	once	adoption	passes	a	critical	mass.	Finally,	changes	in	energy	consumption	
(ΔENC)	are	positive	and	significant	across	all	quantiles	with	relatively	stable	coefficients,	
pointing	 to	 a	 uniform	 association	 that	 may	 capture	 scale	 effects	 rather	 than	 clean	
transition	 per	 se.	 Overall,	 our	 causality-in-quantile	 results	 highlight	 that	 structural	
drivers	(ECI,	GT,	PCI)	act	as	engines	of	green	growth	primarily	in	stronger	performing	
states,	while	uncertainty	dampens	outcomes	most	in	weaker	states,	and	energy	dynamics	
exert	a	stable	but	less	discriminating	influence	across	the	distribution.					

		Figure	4	plots	the	causality-in-quantile	test	results.	For	the	PCI	panel,	the	result	show	no	
significant	causal	effect	on	ΔGG	in	the	lower	quantiles,	but	the	test	statistic	rises	above	
the	 5%	 and	 10%	 critical	 values	 from	 the	 0.4	 quantile	 onwards,	 remaining	 significant	
through	the	mid-to-upper	tails.	This	 indicates	 that	productive	capacity	exerts	a	strong	
predictive	influence	on	green	growth	when	economies	are	already	on	moderate	to	high	
growth	 trajectories,	 underscoring	 its	 state-dependent	 role	 in	 reinforcing	 sustainable	
performance.		
		For	the	ECI	panel,	 the	test	statistic	 is	below	the	critical	values	at	 lower	quantiles,	but	
from	 the	0.4	quantile	onwards	 it	 rises	above	 the	5%	threshold	and	 increases	 sharply,	
remaining	 highly	 significant	 through	 the	 upper	 tail.	 This	 indicates	 that	 economic	
complexity	exerts	a	strong	and	persistent	causal	influence	on	ΔGG	in	moderate	and	high	
growth	regimes,	underscoring	its	central	role	in	sustaining	green	performance.		
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Figure	4:	Balcilar	et	al.	(2016)	causality-in-quantile	results	

 
Note:	The	y-axis	presents	test	statistics,	and	the	x-axis	is	quantiles	of	independent	variables.	
	
		The	test	statistic	 for	the	EPU	panel	 is	below	the	critical	values	at	 lower	quantiles	but	
crosses	 the	 5%	 threshold	 from	 the	 0.4	 quantiles	 onwards,	 rising	 sharply	 toward	 the	
upper	tail.	This	indicates	that	economic	policy	uncertainty	has	a	significant	causal	effect	
on	ΔGG	in	moderate	and	high	growth	regimes,	with	the	influences	strongest	at	the	upper	
quantiles.		
		For	the	ESG-related	uncertainty	panel,	the	test	statistic	lies	below	the	critical	values	at	
lower	quantiles,	indicating	no	significant	causality	in	weak	green	growth	states.	From	the	
0.4	 quantile	 onwards,	 the	 statistic	 surpasses	 the	 5%	 threshold	 and	 remains	 above	 it	
through	the	upper	quantiles,	demonstrating	strong	and	persistent	causality	in	moderate	
and	high	growth	regimes.	This	suggests	that	ESG-related	uncertainty	exerts	a	significant	
and	 sustained	 influence	on	ΔGG,	particularly	when	economies	are	already	performing	
strongly.	
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		The	test	statistic	for	the	GT	panel	remains	below	the	critical	values	at	lower	quantiles	
but	 crosses	 the	 5%	 threshold	 around	 the	 0.3	 quantile	 and	 continues	 to	 rise	 steadily,	
remaining	well	above	the	critical	region	across	higher	quantiles.	This	pattern	indicates	a	
significant	causal	relationship	between	green	technology	and	ΔGG	in	moderate	and	high	
growth	 regimes.	 The	 results	 highlight	 the	 strengthening	 role	 of	 green	 innovation	 as	
economies	transition	toward	higher	levels	of	sustainable	growth.		
		Regarding	 to	 the	ΔENC	panel,	 the	 test	 statistic	 remains	well	 above	 the	5%	and	10%	
critical	values	across	all	quantiles,	indicating	a	strong	and	statistically	significant	causal	
relationship	 between	 changes	 in	 energy	 consumption	 and	 ΔGG	 throughout	 the	
distribution.	The	relatively	flat	pattern	across	quantiles	suggests	a	consistent	influence	
on	energy	dynamics	on	green	growth,	with	the	effect	most	pronounced	in	the	mid-range	
quantiles.	This	implies	that	variations	in	energy	use	exert	a	stable	and	pervasive	impact	
on	green	growth,	regardless	of	the	economy’s	performance	state.		

		The	wavelet-quantile	 regression	 heatmap	 (Figure	 5)	 illustrates	 how	 the	 relationship	
between	each	variable	of	interests	and	ΔGG	varies	across	both	quantiles	(horizontal	axis)	
and	 time-frequency	 scales	 (vertical	 axis).	 For	 the	 PCI	 panel,	 at	 short-term	 scales,	 the	
coefficients	are	relatively	small	and	mostly	neutral	to	mildly	positive	at	lower	quantiles,	
implying	 that	 short-run	 variations	 in	 productive	 capacity	 have	 limited	 or	 short-lived	
effects	 on	 green	 growth,	 particularly	 in	 weaker	 performance	 states.	 However,	 the	
relationship	 strengthens	markedly	 at	medium-term	scales,	where	positive	 coefficients	
dominate	 the	 middle	 quantiles	 (0.4-0.6),	 indicating	 that	 structural	 capacity	
improvements	 begin	 to	 exert	 a	 stabilizing	 and	 supportive	 influence	 on	 sustainable	
growth	 over	 intermediate	 horizons.	 At	 the	 long-term	 scale,	 the	 coefficients	 are	
consistently	 large	 and	 positive—especially	 in	 the	 higher	 quantiles	 (0.7-0.9)—
demonstrating	that	productive	capacity	has	a	strong	and	persistent	contribution	to	green	
growth	in	the	long	run.			

		For	 the	 economic	 complexity	 panel,	 at	 short-term	 scales,	 the	 coefficients	 are	mostly	
small	 and	 positive	 toward	 the	 higher	 quantiles	 (07-0.9),	 suggesting	 that	 increases	 in	
complexity	produce	immediate	but	modest	benefits	for	high-performing	economies.	At	
medium-term	 scales,	 the	 coefficients	 become	 more	 stable	 and	 largely	 positive,	
particularly	in	mid-to-upper	quantiles,	indicating	that	structural	sophistication	enhances	
green	growth	cumulative	diversification	and	 innovation	effects.	 In	 contrast,	 long-term	
scales	show	stronger	and	more	uniformly	positive	coefficients	across	nearly	all	quantiles,	
confirming	that	complexity	plays	a	sustained	role	in	supporting	green	growth	over	longer	
horizons.			
		Regarding	to	the	economic	policy	uncertainty	panel,	at	shot-term	scales,	the	coefficients	
are	predominantly	negative,	especially	in	the	lower	and	middle	quantiles,	suggesting	that	
shoer-run	 spikes	 in	 policy	 uncertainty	 hinger	 green	 growth,	 particularly	 in	weak	 and	
moderate	performance	 states.	At	 the	medium-term	scale,	 the	 coefficients	 shift	 toward	
neutral	or	slightly	positive	levels	at	higher	quantiles,	implying	that	moderate	uncertainty	
may	encourage	adaptive	policy	and	investment	adjustments	in	stronger	economies.	Over	
the	long	term,	the	coefficients	become	consistently	positive	across	nearly	all	quantiles,	
with	the	strongest	effects	observed	in	upper	quantiles	(0.7-0.9).	This	pattern	indicates	
that	 in	 the	 long	 run,	 economies	with	established	green	 frameworks	are	better	able	 to	
absorb	or	even	capitalize	on	policy	uncertainty,	transforming	it	 into	innovation-driven	
adaptation.					
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Figure	5:	Adebayo and Özkan (2024) wavelet-quantile regression results 

	
	
		For	the	ESG-related	uncertainty	panel,	at	short-term	scales,	the	coefficients	are	largely	
negative	across	the	distribution,	indicating	that	spikes	in	ESG	uncertainty	immediately	
suppress	growth-adjust	green	output,	particularly	in	lower	and	mid	quantiles.	Moving	to	
medium-term	scales,	the	coefficients	become	less	negative	and	occasionally	positive	in	
the	 higher	 quantiles,	 suggesting	 that	 as	 uncertainty	 stabilizes,	 well-performing	
economies	can	partially	offset	its	adverse	impact	through	policy	adaptation	and	stronger	
institutional	 frameworks.	 At	 long-term	 scales,	 the	 coefficients	 shift	 to	 consistently	
positive,	especially	in	the	upper	quantiles,	implying	that	sustained	improvements	in	ESG	
governance	and	disclosure	ultimately	support	long-run	green	growth	performance.			
		For	the	green	technology	panel,	at	short-term	scales,	the	coefficients	are	mostly	negative	
across	all	quantiles,	indicating	that	short-run	increases	in	green	technology	investment	
may	initially	impose	adjustment	costs	or	exhibit	delayed	benefits	for	green	growth.	In	the	
medium-term	scales,	the	coefficients	become	neutral	to	moderately	positive,	particularly	
in	 mid-to-upper	 quantiles,	 suggesting	 that	 as	 technological	 diffusion	 progresses,	
innovation	begins	 to	 stimulate	greener	outcomes.	At	 long-term	scales,	 the	 coefficients	
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turn	strongly	positive,	with	the	highest	values	appearing	in	the	upper	quantiles,	implying	
that	mature	green	technology	adoption	drives	sustained	improvements	in	green	growth,	
especially	in	already	high-performing	economies.	
		Regarding	 to	 the	 changes	 in	 energy	 consumption	 panel,	 at	 short-term	 scales,	 the	
coefficients	 are	 predominantly	 negative	 across	 all	 quantiles,	 suggesting	 that	 rapid	 or	
short-lived	 fluctuations	 in	 energy	 consumption	 hinder	 green	 growth,	 particularly	 in	
lower-performing	 states.	 At	 the	medium-term	 scale,	 the	 coefficients	 become	 positive,	
especially	 in	 the	 middle	 and	 upper	 quantiles,	 indicating	 that	 stable	 and	 moderate	
increases	 in	 energy	 use	 contribute	 to	 ΔGG	 as	 economies	 transition	 toward	 cleaner	
production	and	efficiency	gains.	At	long-term	scales,	the	coefficients	remain	positive	and	
stable	across	nearly	all	quantiles,	implying	a	persistent	and	broad-based	contribution	of	
energy	consumption	to	green	growth	over	time,	likely	reflecting	structural	shifts	toward	
renewable	and	efficient	energy	systems.			
		Figure	 6	 illustrates	 the	 strength	 and	 direction	 of	 the	 wavelet	 quantile	 correlation	
between	each	variable	of	interest	and	ΔGG	across	time-frequency	scales	and	quantiles.	At	
short-term	scales,	the	correlations	are	weak	to	moderately	positive	(ranging	from	0.18	to	
0.29),	 indicating	 that	 fluctuations	 in	productive	 capacity	exert	only	 limited	 immediate	
influence	on	green	growth.	In	the	medium-term	scale,	correlations	remain	mostly	weak	
or	near	zero	across	quantiles,	implying	that	short-	and	medium-horizon	co-movements	
between	PCI	and	ΔGG	are	not	particularly	strong	or	persistent.	However,	at	 long-term	
scales,	the	correlations	strengthen	considerably,	especially	in	the	lower	quantiles	(up	to	
0.75),	revealing	a	stable	and	positive	long-run	association	between	productive	capacity	
and	green	growth.	The	middle	quantiles	(0.4-0.6)	show	mild	attenuation,	suggesting	that	
the	relationship	is	most	pronounced	at	the	extremes	of	the	growth	distribution.		
		For	 the	 ECI	 panel,	 at	 short-term	 scales,	 correlations	 are	 consistently	 positive	 and	
moderately	strong	(0.07-0.15)	across	all	quantiles,	suggesting	that	short-run	fluctuations	
in	 economic	 complexity	 are	 closely	 aligned	 with	movements	 in	 green	 growth.	 In	 the	
medium-term,	 coefficients	 remain	 positive	 and	 relatively	 stable	 (around	 0.02-0.03),	
implying	 a	 sustained	 but	moderate	 co-movements	 over	 intermediate	 horizons.	 At	 the	
long-term	scale,	the	pattern	strengthens	further,	with	positive	correlations	dominating	
mid-to-upper	quantiles	and	reaching	up	to	0.61	in	the	highest	quantile.	This	indicates	that	
the	 link	 between	 economic	 complexity	 and	 green	 growth	 is	 persistent	 and	 intensifies	
over	longer	horizons,	particularly	for	economics	in	higher	growth	rates.				
		For	 the	EPU	panel,	 at	 short-term	scales,	 the	 correlations	are	predominantly	negative	
(around	-0.44	t0	-0.17),	especially	in	the	lower	quantiles,	indicating	that	short-run	spikes	
in	policy	uncertainty	hinder	green	growth,	particularly	for	economies	with	weaker	green	
performance.	 In	 the	medium-term,	 the	correlations	weaken	 in	magnitude	and	become	
slightly	 positive	 at	 higher	 quantiles,	 suggesting	 that	 economies	 with	 stronger	 green	
growth	 may	 partially	 absorb	 short-lived	 uncertainty	 shocks.	 At	 long-term	 scales,	 the	
correlations	 turn	mildly	positive	 (up	 to	0.14)	across	most	quantiles,	 implying	 that	 the	
negative	 short-run	 impact	 of	 policy	 uncertainty	 dissipates	 over	 time	 and	 that	 stable	
institutional	frameworks	may	mitigate	its	adverse	effects.	

		For	 the	 ESG	panel,	 at	 short-term	 scales,	 correlations	 are	 strongly	 negative	 across	 all	
quantiles	 (around	 -0.48	 to	 -0.27),	 indicating	 that	 immediate	 fluctuations	 in	 ESG	
uncertainty	significantly	hinder	green	growth,	particularly	in	low-performing	economies.	
Over	the	medium-term,	the	correlations	weaken	in	magnitude	and	turn	mildly	positive	in	
upper	 quantiles,	 suggesting	 that	 the	 adverse	 effects	 of	 ESG	 uncertainty	 gradually	
diminish	as	economies	adapt	through	improved	disclosure	and	governance.	At	long-term	
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scales,	 the	 correlations	 become	 distinctly	 positive	 (up	 to	 0.42),	 especially	 at	 lower	
quantiles,	 signifying	 that	 sustained	 stability	 and	 clearer	 ESG	 frameworks	 contribute	
positively	to	long-run	green	growth	outcomes.	
	

Figure	6:	Kumar	and	Padakondla	(2022)	wavelet-quantile	correlation	

	
	
		For	the	green	technology	panel,	at	short-term	scales,	the	correlations	are	mildly	positive	
(around	0.11-0.13),	suggesting	that	short-run	green	technology	developments	have	an	
immediate	 but	 modest	 association	 with	 green	 growth.	 Over	 the	 medium-term,	 the	
correlations	strengthen	substantially,	particularly	in	the	lower	and	middle	quantiles	(up	
to	0.29),	 indicating	 that	as	 technological	diffusion	takes	hold,	 the	positive	relationship	
between	green	innovation	and	green	growth	becomes	more	pronounced.	At	 long-term	
scales,	the	correlations	remain	positive	in	most	quantiles	but	weaken	slightly	toward	the	
upper	tail,	implying	that	while	the	green	technology-growth	nexus	persists	over	time,	its	
marginal	contribution	stabilizes	in	highly	developed	green	economies.	
		Regarding	 to	 the	 energy	 consumption	 panel,	 at	 short-term	 scales,	 correlations	 are	
strongly	positive	across	all	quantiles,	indicating	that	short-run	changes	in	energy	use	are	
closely	 aligned	 with	 green	 growth	 dynamics,	 possibly	 reflecting	 energy-driven	
production	responses	or	transitional	energy	demand	effects.	At	the	medium-term	scales,	
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the	 correlations	 remain	positive	 but	 slightly	moderate	 (0.33-0.47),	 suggesting	 a	more	
balanced	 relationship	 as	 economies	 adjust	 toward	 cleaner	 and	more	 efficient	 energy	
structures.	 Over	 the	 long-term	 scale,	 correlations	 weaken	 further	 and	 turn	 mildly	
negative	(-0.44	to	-0.37),	implying	that	persistent	increases	in	energy	consumption	may	
eventually	exert	downward	pressure	on	sustainable	growth,	potentially	due	to	resource	
constraints	or	the	environmental	costs	of	prolonged	energy	dependence.	
	
	

5.	Conclusion	
  This	 paper	 examined	 how	 productive	 capacities,	 economic	 complexity,	 green	
technology,	and	different	forms	of	uncertainty	shape	green	growth	in	18	OECD	countries	
between	2003	 and	2022,	 using	 green	GDP	as	 the	main	 indicator	 of	 performance.	 The	
results	 show	 that	 green	 growth	 is	 not	 driven	by	 single	 factors	 in	 isolation	but	 by	 the	
interaction	 between	 structural	 strength,	 innovation	 capacity	 and	 a	 stable	 policy	
environment.	The	effects	are	also	clearly	nonlinear	and	state-dependent:	what	matters	
for	countries	at	the	lower	end	of	the	green	growth	distribution	is	not	always	the	same	as	
what	matters	for	those	already	performing	well.	
	
  First,	we	find	that	productive	capacity	and	economic	complexity	support	green	growth,	
but	their	contribution	is	strongest	once	a	country	has	already	reached	a	certain	level	of	
structural	development.	At	low	quantiles	of	productive	capacity,	green	growth	is	often	
constrained,	 while	 at	 higher	 levels,	 productive	 capacity	 amplifies	 gains	 and	 helps	 to	
sustain	 a	 greener	 trajectory.	 Economic	 complexity	 shows	 an	 even	 more	 robust	 and	
persistent	positive	effect,	especially	in	the	upper	part	of	the	green	growth	distribution.	
This	suggests	that	moving	towards	more	knowledge-intensive	and	diversified	productive	
structures	is	central	for	long-run	green	growth.	
	
  Second,	green	technology	plays	a	pivotal	but	threshold-driven	role.	Low	levels	of	green	
technology	and	isolated	innovations	provide	only	limited	benefits	and	may	even	entail	
short-run	 adjustment	 costs.	When	 the	 share	 of	 green	 technologies	 becomes	 sizeable,	
however,	their	impact	on	green	GDP	turns	strongly	positive	and	reinforces	existing	green	
growth	momentum.	This	pattern	is	consistent	with	diffusion	and	scale	effects:	once	clean	
technologies	are	embedded	in	production	systems,	they	support	both	higher	output	and	
lower	environmental	damage.	
	
		Third,	uncertainty	is	a	clear	drag	on	green	growth,	especially	in	weaker	states.	Economic	
policy	uncertainty	and	ESG-related	uncertainty	both	 tend	 to	depress	green	GDP	when	
green	growth	is	already	fragile.	Policy	uncertainty	shocks	have	sharp	but	relatively	short-
lived	impacts,	whereas	ESG	uncertainty	is	more	persistent	and	affects	a	wider	range	of	
quantiles	and	horizons.	These	results	underline	that	unclear	or	unstable	policy	signals,	
including	 around	 ESG	 rules	 and	 climate	 commitments,	 can	 delay	 long-term	 green	
investment	and	weaken	the	credibility	of	the	transition.	
	
		Fourth,	changes	in	energy	consumption	are	positively	associated	with	green	GDP	across	
quantiles,	but	this	relationship	is	conditional.	In	the	short	term,	rising	energy	use	tends	
to	coincide	with	higher	growth,	reflecting	scale	effects.	Over	the	longer	term,	the	benefits	
depend	on	whether	additional	energy	demand	 is	met	 from	cleaner	and	more	efficient	
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sources.	Without	continued	improvements	in	energy	mix	and	efficiency,	higher	energy	
use	can	lead	to	environmental	stress	that	may	undermine	future	green	growth.	

		Taken	together,	the	evidence	suggests	several	policy	implications	for	OECD	countries.	In	
particular,	firstly,	build	and	rebalance	productive	capacities.	Policymakers	should	treat	
productive	capacities	as	a	foundation	for	green	growth.	This	means	sustained	investment	
in	 human	 capital,	 transport	 and	 digital	 infrastructure,	 reliable	 energy	 systems	 and	
effective	 institutions.	 Since	 the	positive	effects	of	productive	 capacity	 are	 strongest	 at	
higher	 levels	 of	 green	 growth,	 there	 is	 a	 risk	 that	 existing	 leaders	 pull	 further	 ahead.	
Targeted	 support	 for	 lagging	 regions	 and	 sectors	 is	 needed	 so	 they	 can	 cross	 the	
threshold	at	which	productive	capacity	begins	to	reinforce	green	outcomes	rather	than	
simply	raising	conventional	output.		

		Second,	 use	 industrial	 policy	 to	 push	 economic	 complexity	 in	 a	 green	 direction.	 The	
strong	 link	 between	 economic	 complexity	 and	 green	 GDP	 implies	 that	 industrial	 and	
innovation	policy	should	focus	on	developing	more	complex,	low-carbon	export	baskets	
rather	 than	simply	expanding	any	high-tech	activity.	Support	 for	sectors	 that	combine	
high	 value	 added	 with	 low	 material	 and	 carbon	 intensity,	 such	 as	 advanced	
manufacturing,	 digital	 services	 and	 clean	 technology	 supply	 chains,	 can	 raise	 both	
complexity	and	environmental	performance.	Trade	and	competition	policy	should	also	
aim	to	keep	markets	open	enough	for	firms	to	 learn,	upgrade	and	participate	 in	green	
global	value	chains.						

		Third,	 scale	 and	 diffuse	 green	 innovation,	 not	 only	 invent	 it.	 The	 results	 on	 green	
technology	 indicate	 that	small	pockets	of	green	patents	are	not	enough;	benefits	arise	
when	green	technologies	reach	sufficient	scale	and	diffusion.	Policy	thus	needs	to	support	
the	full	innovation	cycle:	basic	R&D,	demonstration	projects,	standards,	deployment	and	
diffusion.	Instruments	may	include	targeted	R&D	grants,	tax	credits	for	clean	investment,	
green	 public	 procurement	 and	 risk-sharing	 through	 green	 investment	 banks	 and	
development	finance	institutions.	Policies	should	pay	attention	to	diffusion	to	SMEs	and	
lagging	regions,	not	only	to	technological	frontiers	in	a	few	large	firms	or	cities.		

		Fourth,	reduce	policy	and	ESG	uncertainty	through	clear,	credible	frameworks.	Because	
both	economic	policy	uncertainty	and	ESG	uncertainty	depress	green	growth,	especially	
in	weaker	 states,	 a	 central	 policy	 task	 is	 to	provide	 stable	 and	predictable	 rules.	This	
includes:	i)	setting	clear	and	time-consistent	climate	targets	and	transition	pathways;	ii)	
avoiding	frequent	reversals	in	carbon	pricing,	subsidies	and	regulations;	iii)	harmonising	
ESG	 disclosure	 standards	 and	 supervisory	 expectations	 across	 agencies;	 and	 iv)	
communicating	 changes	 with	 enough	 lead	 time	 for	 firms	 and	 investors	 to	 adjust.	 A	
credible,	predictable	policy	and	ESG	framework	lowers	risk	premia,	lengthens	planning	
horizons	and	encourages	firms	to	commit	capital	to	long-term	green	projects.	

		Fifth,	align	energy	demand	with	a	clean	and	efficient	supply.	The	positive	but	conditional	
role	of	energy	consumption	suggests	that	energy	policy	should	not	aim	to	reduce	energy	
use	 mechanically,	 but	 to	 change	 how	 energy	 is	 produced	 and	 used.	 Investments	 in	
renewable	 generation,	 grid	 upgrades,	 storage,	 demand-side	 management	 and	 energy	
efficiency	standards	can	ensure	that	higher	energy	demand,	where	 it	occurs,	 is	met	 in	
ways	consistent	with	green	growth.	At	the	same	time,	phasing	out	fossil-fuel	subsidies	
and	 tightening	performance	standards	 for	carbon-intensive	assets	 can	reduce	 the	risk	
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that	energy-driven	growth	leads	to	environmental	lock-in.	Support	for	households	and	
workers	most	 exposed	 to	 the	 transition	will	 be	 important	 for	maintaining	 social	 and	
political	support.	

		Last,	 use	 OECD	 experience	 to	 guide	 and	 support	 broader	 transition.	 Because	 OECD	
economies	 are	 often	 early	 adopters	 of	 green	 policies	 and	 ESG	 frameworks,	 their	
experiences	 in	 managing	 productive	 capacities,	 complexity,	 green	 innovation	 and	
uncertainty	can	provide	useful	lessons	for	other	countries.	Sharing	data,	tools	(such	as	
green	 GDP	 metrics	 and	 productive	 capacity	 indices),	 and	 policy	 designs	 can	 reduce	
learning	costs	elsewhere	and	help	to	avoid	repeated	policy	mistakes.	At	the	same	time,	
OECD	countries	should	recognise	that	their	own	green	growth	is	interconnected	with	the	
rest	of	the	world	through	trade,	technology	transfer	and	finance,	and	design	policies	that	
support,	rather	than	hinder,	a	wider	global	transition.	

		Overall,	the	findings	indicate	that	green	growth	in	advanced	economies	is	not	automatic.	
It	 depends	 on	 the	 long-run	 development	 of	 structural	 and	 technological	 capacities,	
combined	 with	 credible	 and	 stable	 policy	 signals	 that	 lower	 uncertainty	 around	 the	
transition.	The	challenge	for	policymakers	is	to	manage	these	elements	together,	rather	
than	treating	productive	capacity,	innovation,	ESG	and	energy	use	as	separate	agendas.	
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